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Abstract

Square mosaic knots have many applications in algebra, such as modeling quantum

states. We continue the work of the previous REU cohort in extending mosaic knot

theory to a theory of hexagonal mosaic knots, which are knots and links embedded in

a plane tiling of regular hexagons. We define a new knot invariant, the corona number,

by restricting the placement of tiles. We establish the corona number for knots of nine

or fewer crossings, excluding 916. We also examine tile patches with a high number

of link crossings, which we describe as saturated polygons. Considering patches of

varying size and shape, we identify the number of components that are produced in

these saturated polygons, with a particular focus on patches circumscribed by regular

and irregular hexagons. Finally, we discuss open questions relating to the saturated

polygons and bounds on the corona number.

1 Background

1.1 Knots and Links

Before we jump in to hexagonal mosaic knots, we need to know what a knot actually is. So
how do we make a knot? Well, take a piece of string and tie it together in any fashion. Now
glue the ends together and you have a knot! A formal definition is given below.

Definition 1. A knot is a closed curve in R3 that has no thickness and does not intersect
itself.

Figures 1 and 2 show two examples of knots, the unknot (or the trivial knot) and a trefoil.
A trefoil is the simplest nontrivial knot.
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Figure 1: The unknot. Figure 2: A Trefoil.

We can also use more than one piece of string, or have more than one curve.

Definition 2. A link is a collection of knots that are tangled together. Each “string” of a
link L is called a component of L.

Knots can be seen as links with only one component. The Borromean rings, shown in
the figure below, is a link with three components.

Figure 3: The Borromean rings

1.2 Reidemeister Moves

Note that there are infinitely many ways to draw a knot. We call drawings of knots and links,
like the previous figures, knot projections. In a projection of a link, a strand is a portion of
the link that goes from one undercrossing to another undercrossing, with only overcrossings
in between. A strand of the knot on the right in the figure below can be seen in red. Note
how our red strand begins and ends at an undercrossing, with two overcrossings in between.

Figure 4: Two projections of a trefoil

But how do we know that the knot on the right in Figure ?? is in fact a trefoil? Well, in
1926 Kurt Reidemeister was able to prove the following theorem.
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Theorem 1. Two projections are the same knot if and only if we can get from one projection
to another through a series of Reidemeister Moves and planar isotopies.

There are three Reidemeister Moves, Type I, Type II, and Type III.

Figure 5: Type I Reidemeister Move.

or

Figure 6: Type II Reidemeister Move.

or

Figure 7: Type III Reidemeister Move.

Since knot theory is a subset of topology, then performing planar isotopies, or continuous
deformations in the projection plane, on a knot does not a↵ect the knot.
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Figure 8: Planar Isotopy.

It is left as an exercise to the reader to use Reidemeister moves and planar isotopies to show
that the knot on the right in Figure ?? is in fact a trefoil.

1.3 Knot Invariants

While Reidemeister moves can tell us if two projections are the same knot, it is di�cult to use
Reidemeister moves to show that two projections are distinct knots. Even if we are unable
to get from knot K to knot L using thousands of di↵erent combinations of Reidemeister
moves, that does not mean that K and L are distinct. Maybe we simply have not found the
correct sequence of Reidemeister moves. So, we need a stronger tool to let us know when
two knots or links are distinct.

Definition 3. A knot invariant is a characteristic of a knot (or link) K that does not depend
on the projection of K. I.e., performing Reidemeister moves does not change the value of the
knot invariant.

For example, tricolorability is a knot invariant. We say that a knot (or link) K is tricolorable
if the following conditions hold:

(1) Each strand of K must be one of three colors

(2) At each crossing c, the three strands that meet at c must be either all the same color,
or all distinct colors

(3) At least two colors must be used

Below we can see that the trefoil is tricolorable. Since tricolorability is a knot invariant,
both projections of the trefoil seen in Figure ?? are tricolorable.

Figure 9: Two tricolored projections of the trefoil

Recall that for a knot K to be tricolorable, we must use at least two colors to color all the
strands of K. Since the unknot only has one strand, we can use at most one color. Therefore
the unknot is not tricolorable. Since the trefoil is tricolorable, and the unknot is not, we
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know that the trefoil is distinct from the unknot.

Tricolorability is only one example of several existing knot invariants, but researchers
have yet to find THE knot invariant, i.e., a knot invariant � such that two knots K,L are
the same if and only if �(K) = �(L). For each knot invariant that is currently known, we
can find two distinct knots with the same knot invariant value.

1.4 Hexagonal Mosaic Knots

All of the definitions and concepts that we have covered so far apply to knot theory in
general, and therefore they apply to the theory of hexagonal mosaic knots as well.

Definition 4. A hexagonal mosaic knot is a knot or a link embedded in a plane tiling of
regular hexagons.

In Figure ??, we have the 24 distinct tiles we will be using to construct hexagonal mosaic
knots and links. These tiles are distinct up to symmetries of a regular hexagon, according to
the three properties given below. We will refer to these hexagonal mosaic tiles as hextiles.

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5

Type 6 Type 7 Type 8 Type 9 Type 10 Type 11

Type 12 Type 13 Type 14 Type 15 Type 16 Type 17

Type 18 Type 19 Type 21 Type 22 Type 23Type 20

Figure 10: The set of 24 hextiles distinct up to rotation and reflection

Each hextile obeys the following three properties:

(1) No curve intersects itself

(2) No curve intersects another curve more than once

(3) There is at most one curve per each edge of the hextile

Remark. To flip a tile over a line of symmetry, let overcrossings become undercrossings
and vice versa, as if the strands on the tile were made of string and had depth to them. For
example, flipping the title T9 over the vertical line of symmetry gives
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We will refer to a projection of a knot or link K using these hextiles as a diagram of K.

Figure 11: A normal projection of the
trefoil. Figure 12: A diagram of the trefoil with

7 hextiles.

Definition 5. The point of intersection between a strand on a hextile and the edge of
a hextile is called a connection point. A diagram is said to be suitably connected if the
connection point of each hextile touches a connection point of its adjacent tiles.

Figure 13: Not a suitably connected di-
agram.

Figure 14: A suitably connected dia-
gram of the figure eight knot.

The 2016 REU cohort at UW Washington proposed a new knot invariant, the hextile

number of a hexagonal mosaic knot, or the minimal number of tiles necessary to create a
knot diagram on hexagonal tiling [2]. The hextile number is a knot invariant that is analogous
to the tile number in square mosaic knot theory [4]. Both the hextile number and the tile
number of a knot measure the complexity of the knot; they measure how e�ciently a knot
takes up space. We define a new knot invariant, the corona number, that also measures the
space-e�ciency of a knot or link. But first, we need to understand the notion of a corona,
which we define recursively.
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Definition 6. Let the zero-th corona, or C0, be a single hexagonal tile. For n � 1, define
the nth corona, or Cn, to be the set of all hexagonal tiles T that are adjacent to Cn�1 such
that T 62 Cn�2.

In Figure ??, C0, C1, C2, C3, C4 are shaded blue, red, orange, green, and purple, respec-
tively. We can also look at the union of distinct coronae. We say a board of size n is the set
of tiles

S =
n[

i=0

Ci.

Figure 15: A board of size 4.
.

Now that we understand a board of size n, we can move on to corona number.

Definition 7. The corona number of a knot (or link) K, denoted {(K), is the least board
size that permits a diagram of K. I.e., {(K) = n if a board of size n permits a diagram of
K, and no diagram of K fits on a board of size m for 0  m < n.

Just as the hextile number is analogous to the tile number, the corona number is analogous
to the mosaic number, originally developed by Kau↵man and Lomanaco [6]. Later on, we
will show that the trefoil in Figure ?? has corona number 1. How many other knots will
have corona number 1? What is the maximum number of crossings we can fit on a board of
size n? We will explore these questions throughout our paper.

2 Corona Number

Throughout this section, we will establish the corona number for several lower-crossing knots.
There are two parts to establishing the corona number of a knot K. To prove that {(K) = n,
we need to not only show that a diagram of K fits on a board of size n, but we also need
to show that a smaller sized board does not permit a diagram of K. The second part of
establishing the corona number can be tricky. We can do this by taking advantage of other
knot invariants that exist in classical knot theory, like the crossing number.
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Definition 8. The crossing number of a knot (or link) K, denoted c(K), is the least number
of crossings in any projection of a knot. I.e. c(K) = n if n is the smallest nonnegative integer
such that any projection of K has at least n crossings.

Before we utilize the crossing number, note that the only tile permitted on a suitably con-
nected board of size zero is T0, or the empty tile, so we know that {(K) � 1 for any knot or
link K.

Theorem 2. Let K be either the unknot or a trefoil knot. Then {(K) = 1.

Proof. Since {(K) � 1, it is su�cient to show that the unknot and the trefoil can be drawn
on a board of size 1, as shown in the figures below.

Figure 16: A diagram of the unknot on
a board of size 1.

Figure 17: A diagram of the trefoil on a
board of size 1.

Lemma 1. If K is a knot or link such that c(K) � 4, then {(K) � 2.

Proof. Let K be such a knot. It su�ces to show that a board of size 1 does not permit
a diagram of K. Note that any crossing tile has at least four distinct connection points.
Moreover, on a board of size 1, C1 is the outermost corona, so any tile T in C1 has three
edges that border the infinite outermost region and are therefore not contiguous with any
other tile. In Figure ??, we can see these edges highlighted in blue for each tile in C1.

Figure 18: A board of size 1.

Since a diagram of K must be suitably connected, we cannot have any connection points
on the outer blue edges. Hence, if T is on C1, then T has at most three connection points,
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and is therefore not a crossing tile. This implies that the center tile can be the only crossing
tile on a board of size 1. Since each hextile has at most three crossings, a suitably connected
board of size 1 has at most three crossings. Since c(K) � 4 > 3, then a board of size 1 does
not permit a diagram of K.

Theorem 3. Let K be a knot such that 4  c(K)  9 and K 6= 916. Then {(K) = 2.

Proof. By Lemma ??, we know that {(K) � 2. The appendix shows that a board of size 2
permits a diagram of K, therefore {(K) = 2.

3 Saturation

We will expand on the work of Howards and Kobin and their notion of “saturation” [5]. The
main goal of saturation is to use as many crossings as possible in a certain patch of tiles. In
the square mosaic case, that meant using tiles with one crossing. In our case, we will use
hextiles with three crossings. We want to know what happens when we saturate these tile
patches. Do we get a knot or a link? If we get a link, how many components will it have?

Definition 9. Let P be a polygon that is constructed from hextiles. The perimeter of P is
the set of exterior tiles of P that border the infinite outermost region. The inner board of P
is the set of remaining interior tiles.

In the figure below, we have a parallelogram P constructed from hextiles. The perimeter
of P is shaded in yellow and the inner board of P is shaded in purple.

Figure 19: The perimeter and inner board of a parallelogram P.

Definition 10. Given a polygon P constructed from hextiles, we say P is saturated if the
following conditions are satisfied:

1) Every hextile on the inner board of P is either T20 or T21

2) The hextiles on the perimeter of P suitably connect the board using only T1 and T4.
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Type 20 Type 21Type 1 Type 4

Figure 20: A saturated parallelogram.

Figure 21: A saturated board of size 4.

Although T22 and T23 are also hextiles with three crossings, note that the crossings are
not alternating; both tiles have a strand that has two consecutive over crossings, and another
strand that has two consecutive under crossings. We want the crossings to be alternating
because that minimizes the potential for a Reidemeister move to undo a crossing. We also
want to keep this notion of saturation analogous to saturation in the square mosaic case,
which does not permit crossings on the perimeter of an n⇥n board [5]. Therefore we define
a saturated polygon to not allow crossing tiles on the perimeter and non-perimeter tiles to
contain three crossings. It should be noted that this definition does not construct links with
a maximum number of crossings possible since one can create suitably connected diagrams
on polygons with crossings on perimeter tiles. With our definition, once the inner board
(non-perimeter tiles) is placed, we can suitably connect the board in two ways.

A given edge on the perimeter of a saturated polygon P will consist either entirely of T1

hextiles, or entirely of T4 hextiles, as seen in the figure below.

Figure 22

As we traverse the perimeter of a saturated polygon, we will pass from edge to edge of the
polygon. We call a hextile on two edges of the polygon a corner tile. Since we focus on
hexagons in this paper, we show that if an edge e contains only T4 tiles or only T1 tiles (See
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Cases A and B in Figure ??), then adjacent edges will contain T1 tiles or T4 tiles respectively.
Since Ti is on the perimeter of P, then Ti is either T1 or T4. Since P is a saturated polygon,
the edges highlighted in blue will have a connection point, so Ti has at least two connection
points in both cases. Moreover, the edges highlighted in green border the infinite outermost
region and therefore do not have any connection points. Hence Ti has at most four connection
points in both cases.

A B

e e

Ti Ti

Figure 23

Note that for Case A, there is no connection point on the edge highlighted in red, so Ti

has at most three connection points. However, there must be an even amount of connection
points, so Ti has exactly two connection points, which implies that Ti = T1. For Case B, we
do have a connection point on the edge highlighted in red, so Ti has at least three connection
points. Again, there must be an even amount of connection points, so Ti has exactly four
connection points, which implies that Ti = T4. Hence Case A and Case B will look like the
Figure ??.

A B

e e

Figure 24

Thus hexagonal edges will alternate between T1 and T4 tiles as you traverse the perimeter
of the hexagon.

While the 2016 REU cohort focused on saturated parallelograms [2], we will focus on
saturated hexagons, both regular and irregular.
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Definition 11. For m,n 2 Z+, we say that H is an m⇥ n saturated stretched hexagon if H
is a saturated hexagon such that

1) Four sides of H have length m.

2) Two sides of H have length n.

3) The sides of length n are opposite each other.

4) H is oriented so that the sides of length n are horizontal, i.e. the top and bottom
edges of H.

5) The top perimeter edge of H consists of T1 hextiles and the bottom perimeter edge
of H consists of T4 hextiles.

Our notion of side length is illustrated in the figure below.

m
 h

ex
til

es

n hextiles

n hextiles

m
 hextiles

m
 h

ex
til

es
m

 hextiles

Figure 25: An m⇥ n saturated stretched hexagon.

The crossings in Figure ?? are drawn ambiguously to show that we can use any rotation
of T20 or T21 to saturate H. Note that if we want to saturate H so that the top perimeter
tiles consist of T4 hextiles and the bottom perimeter tiles consist of T1 hextiles, we can
simply rotate H by 180�. Therefore no generality is lost when H is oriented so that the top
perimeter tiles consist of T1 hextiles. Figure ?? shows a 3 ⇥ 6 saturated stretched hexagon
that is saturated using only one orientation of T20, while the 6⇥3 saturated stretched hexagon
in Figure ?? contains di↵erent rotations of both T20 and T21.
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Figure 26: A 3 ⇥ 6 saturated stretched
hexagon.

Figure 27: A 6 ⇥ 3 saturated stretched
hexagon

When looking at a saturated polygon, we are interested in counting the number of com-
ponents of the link that results from the saturated diagram. If one places a finger on an
arbitrary point of the knot (or link) in the diagram, it is possible to follow the component
as it “bounces” around the polygon (like a billiard ball on a billiard table) and goes back
to the starting point. We will utilize a hexagonal coordinate system to keep track of the
“bouncing” of each individual component.

Our hexagonal coordinate system will have two axes that intersect at a 60� angle, as seen
in Figure ??, and each hextile will represent exactly one point, with integer coordinates, in
our hexagonal coordinate system.
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y=0

x=
0

(0, 0)

Figure 28: Hexagonal Coordinate System

Superimpose the hexagonal coordinate system on a graph of R2 with Cartesian coor-
dinates, lining up the origins and the x-axes for both coordinate systems. Notice that the
y-axis for the hexagonal coordinate system corresponds to the line y =

p
3
2 x in R2. Therefore,

in R2, two unit vectors on the hexagonal coordinate system axes are (1, 0) and (1/2,
p
3/2).

Let the point k(0, 1) + l(1/2,
p
3/2) 2 R2, k, l 2 Z correspond to the point (k, l) in the

hexagonal coordinate system. Formally, we can convert hexagonal coordinates to Cartesian
coordinates using the function �, defined below.

� : Z⇥ Z ! R2

(k, l) 7! k(0, 1) + l(1/2,
p
3/2),

As seen in Figure ??, points are defined at the centers of hextiles.
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y=0

x=
0

(0, 0)

(0, -3)

(3, -1)

(2, 2)

(-3, 3)

Figure 29: Hexagonal Coordinate System.

Lines of the form x = k, y = j, and x+ y = i will be pivotal moving forward. The origin and
the point (�3, 3) are both on the line x+ y = 0.

This hexagonal coordinate system will help keep track of individual components as they
“bounce” around the perimeter of an m⇥n saturated hexagon H. What exactly do we mean
by “bounce”? Recall that the perimeter edges of H will either consist entirely of T1 hextiles
or entirely of T4 hextiles. First consider an edge that consists of T1 tiles. The component
highlighted in red in Figure ?? travels along the line x = j, “bounces” o↵ the line y = k at
the point (j, k), and continues to travel along the line x+ y = j + k.
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x=
j

x+
y=

j+
k

y=k

Figure 30

Now consider an edge that consists entirely of T4 hextiles. Let C be the component
highlighted in red in Figure ??. Just as before, C travels along the line x = j and bounces
o↵ the line y = k at the point (j, k). However, the Reidemeister 1 move that occurs among
the T4 hextiles causes C to behave di↵erently from before. In this case, C travels along the
line y = k and bounces o↵ the line x = j + 1 at the point (j + 1, k), and then continues to
travel along the line x+ y = j + k + l.

y=k

x=
j

x+
y=
j+
1+

k

x=
j+
1

Figure 31

Components bounce o↵ the lateral edges of H in a similar fashion as the two cases given
above.

Theorem 4. Let H be an m⇥ n saturated stretched hexagon. Then the link produced by
H has exactly m components.

Proof. Begin with an m⇥n saturated stretched hexagon H, as in Figure ??. Place the origin
at the left central corner so that the corners of H are (0, 0), (0,m), (n,m), (n + m, 0), (n +
m,�m), and (m,�m) as they are read clockwise. We will describe the components of the
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link created by H; arguments will depend on the parity of n as well as the relationship
between n and m.

1. Suppose n is even.

Let Tj be the component of link containing segments of the lines x = j or x+y = m+j.
Notice that for j = �m+ 1,�m+ 2, . . . , 0, Tj contains segments of x+ y = m+ j (as
shown in blue in Figure ??), but Tj does not contain segments of x = j, since x = j is
not a strand contained in H. For j = 1, 2, . . . , n�1, Tj contains segments of both x = j
and x+y = m+j, as shown in red in Figure ??. Finally, for j = n, n+1, . . . , n+m�1,
Tj contains segments of x = j (as shown in green in Figure ??), but Tj does not contain
segments of x+ y = j +m since x+ y = j +m is not a strand contained in H.

(0,0)

(0,m) (n,m)

(n+m,0)

(n+m,-m)(m,-m)

Figure 32: A 4⇥ 6 saturated stretched hexagon H.

Note that Tj = Tk if j mod (2m�1) = k mod (2m�1). Let j denote j mod (2m�1).
Then Tj = Tk if j = k. Indeed, starting at the point (j,m) if we trace Tj to the left
using the first table below or to the right using the second table below, we see that
Tj = Tj�(2m�1) = Tj+(2m�1). Repeated use of these tables yields the desired result.

Step Follow along line Until intersects line Intersection point
L1 x = j y = �m (j,�m)
L2 y = �m x = j + 1 (j + 1,�m)
L3 x+ y = j �m+ 1 y = m (j � (2m� 1),m)
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Step Follow along line Until intersects line Intersection point
R1 x+ y = j +m y = �m (j + 2m,�m)
R2 y = �m x = j + 2m� 1 (j + 2m� 1,�m)
R3 x = j + 2m� 1 y = m (j + (2m� 1),m)

At this point there are at most 2m � 1 distinct components in the link, namely
Tn

2�(m�1), Tn
2�(m�2), . . . , Tn

2
, Tn

2+1, . . . , Tn
2+m�1. We will show that Tn

2�i = Tn
2+i, so

that Tn
2+i for i = 0, 1, . . . ,m � 1 represent the m components of the link in H. In

order to prove this we will use the symmetry of H to trace strands of the components
Tn

2�i and Tn
2+i that connect via a horizontal line in H. So now let j = n

2 + i, where
i = �(m � 1),�(m � 2), . . . ,m � 1. Note that n

2 � i = n � j, so we will show that
Tn�j = Tj.

We will now investigate the end behavior of Tj in H, and how it hits the left or right
side of H. That is, for di↵erent values j, how will the component Tj hit the lower left,
upper left, upper right, or lower right edges of H. Given the point (j,m) on Tj, use
one of the two cases:

(a) If 1  j  m � 1 then use the steps to trace the Tj component to the lower left
(LL) side of H. As seen below, y = �j will be contained in the Tj component.

Step Follow along line Until intersects line Intersection point
LL1 x = j x+ y = 0 (j,�j)

Since 1  j  m � 1, then n � (m � 1)  n � j  n � 1. Starting at the point
(n� j,m), use the steps to trace the Tn�j component to the lower right (LR) side
of H. As seen below, y = �j will be contained in the Tn�j component.

Step Follow along line Until intersects line Intersection point
LR1 x+ y = n� j +m x = n+m (n+m,�j)

Hence Tj and Tn�j are connected via the line y = �j, and are therefore the same
component.

(b) If m  j  2m� 1 then use the steps to trace the Tj component to the upper left
(LU) side of H. As seen below, y = j�m will be contained in the Tj component.

Step Follow along line Until intersects line Intersection point
UL1 x = j y = �m (j,�m)
UL2 y = �m x = j + 1 (j + 1,�m)
UL3 x+ y = j �m+ 1 x = 0 (0, j �m+ 1)
UL4 x = 0 y = j �m (0, j �m)

Since m  j  2m� 1, then n� (2m� 1)  n� j  n�m. Starting at the point
(n � j,m), use the steps to trace the Tn�j component to the upper right (RU)
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side of H. As seen below, y = j �m will be contained in the Tn�j component.

Step Follow along line Until intersects line Intersection point
UR1 x+ y = n� j +m y = �m (n� j + 2m,�m)
UR2 y = �m x = n� j + 2m� 1 (n� j + 2m� 1,�m)
UR3 x = n� j + 2m� 1 x+ y = n+m (n� j + (2m� 1), j �m� 1))
UR4 x+ y = n+m y = j �m� 1 + 1 (n� j + (2m� 1) + 1, j �m

Hence Tj and Tn�j are connected via the line y = j � m, and are therefore the
same component.

In each case, we have that Tn
2+i = Tj = Tn�j = Tn

2�i, therefore the link inH has at most
m components, namely Tn

2+i for i = 0, 1, . . . ,m�1. We will see that these components
have up to three general descriptions given in the cases below. The appearance of these
cases depends on the relationship between n and m. In particular, one of the following
relations will hold:

• n � 2m (H is short and wide)

• m  n < 2m (H is somewhat proportional)

• n  m� 1 (H is tall and thin)

Suppose n � 2m, then we will only use Case 1 below. Indeed, in Case 1 we have
i = 0, . . . ,min{m� 1, n2 � 1} = m� 1, where the last equality holds since n � 2m. We
will also have n

2 > m� n
2 � 1, so there are no values of i that fall under Case 2 when

n � 2m. Similarly, if n � 2m, then max{n
2 ,m� n

2} = n
2 � m > m� 1. Therefore there

are no values of i that fall under Case 3 when n � 2m. Hence, when n � 2m, all of
our values of i for i = 0, 1, . . . ,m� 1 fall under Case 1.

Now suppose m  n < 2m, then we will use cases 1 and 3 below. Indeed, in Case 1 we
have i = 0, . . . ,min{m� 1, n2 � 1} = n

2 � 1, where the last equality holds since n < 2m.
We will also have n

2 > m � n
2 � 1 since n > m � 1. Therefore there are no values of

i that fall under Case 2 when m  n < 2m. On the other hand, since m  n, then
max{n

2 ,m� n
2} = n

2 . Therefore i = n
2 , . . . ,m� 1 fall under Case 3.

Lastly, suppose n  m � 1, then we will use all three cases below. Indeed, in Case
1 we have i = 0, . . . ,min{m � 1, n2 � 1} = n

2 � 1, where the last equality holds since
n
2 �1  n  m�1. Since n  m�1, then n

2  m� n
2 �1. Therefore i = n

2 , . . . ,m� n
2 �1

fall under Case 2. Lastly, since n  m � 1, then max{n
2 ,m � n

2} = m � n
2 . Therefore

i = m� n
2 , . . . ,m� 1 falls under Case 3.

In all three relationships between n and m, for i = 0, 1, . . . ,m � 1, i is accounted for
in exactly one of the three cases below.

Case 1: For i = 0, . . . ,min{m � 1, n2 � 1}, the components Tn
2�i, and Tn

2+i can be
described as follows. The last points in the top left of H bouncing to the left from
(n2 � i,m) and (n2 + i,m) respectively are (1 + n

2 � i� 1,m) and (1 + n
2 + i� 1,m).

Using the symmetry of H, the last points on the top right of H bouncing from the right
(n2�i,m) and (n2+i,m) respectively are (n�1� n

2 + i� 1,m) and (n�1� n
2 � i� 1,m).
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Notice that a strand of the component is created from tracing Tn
2�i to the left and Tn

2+i

to the right; this is given by (i) or (ii) below. Likewise a strand of the component is
created from tracing Tn

2�i to the right and Tn
2+i to the left; this is given by (iii) and

(iv) cases below. Let

P1 = (1 +
n

2
� i� 1,m),

P2 = (1 +
n

2
+ i� 1,m),

P3 = (
n

2
� i,m),

P4 = (
n

2
+ i,m),

P5 = (n� 1� n

2
+ i� 1,m),

P6 = (n� 1� n

2
� i� 1,m).

Note that P1, P2, P3, are symmetric (across the point (n2 ,m)) to P6, P5, P4 respectively.

(i) If 1  1 + n
2 � i� 1  m � 1, then apply part (a) to the point P1. We see

that T1+n
2�i�1 = Tn

2�i is connected to Tn�(1+n
2�i�1) = Tn

2+i (and therefore P1 is

connected to P6) via the line y = �1 � n
2 � i� 1. In this case, this segment of

Tn
2+i will have the form below.

P1=(1+ n/2 -i -1, m) P6=(n-1- n/2 -i -1, m)

y=-1- n/2 -i -1

(ii) If m  1 + n
2 � i� 1  2m � 1, then apply part (b) to the point P1. We see

that T1+n
2�i�1 = Tn

2�i is connected to Tn�(1+n
2�i�1) = Tn

2+i (and therefore P1 is

connected to P6) via the line y = 1+ n
2 � i� 1�m. In this case, this segment of

Tn
2+i will have the form below.

P1=(1+ n/2 -i -1, m) P6=(n-1- n/2 -i -1, m)

y=-1- n/2 -i -1

(iii) If 1  1 + n
2 + i� 1  m � 1, then apply part (a) to the point P2. We see

that T1+n
2+i�1 = Tn

2+i is connected to Tn�(1+n
2+i�1) = Tn

2�i (and therefore P2 is
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connected to P5) via the line y = �1 � n
2 + i� 1. In this case, this segment of

Tn
2+i will have the form below.

P2=(1+ n/2 +i -1, m) P5=(n-1- n/2 +i -1, m)

y=-1- n/2 +i -1

(iv) If m  1 + n
2 + i� 1  2m � 1, then apply part (b) to the point P2. We see

that T1+n
2+i�1 = Tn

2+i is connected to Tn�(1+n
2+i�1) = Tn

2�i (and therefore P2 is

connected to P5) via the line y = 1 + n
2 + i� 1 � m. In this case, this segment

ofTn
2+i will have the form below.

P2=(1+ n/2 +i -1, m) P5=(n-1- n/2 +i -1, m)

y=1+ n/2 +i -1

Notation. We write Pk ! Pl if we can travel along a component T to get from the
point Pk to the point Pl. Note that Pk ! Pl if and only if Pl ! Pk.

Cases (i) and (ii) show that P1 ! P6, while cases (iii) and (iv) show that P2 ! P5.
Moreover, we know that P1 ! P3 ! P5 since P1 and P3 are a factor of (2m� 1) away
from each other, and P3 and P5 are a factor of (2m � 1) away from each other. We
will similarly have P2 ! P4 ! P6. Therefore, if we follow Tn

2�i = Tn
2+i starting from

P1, then we have
P1 ! P3 ! P5 ! P2 ! P4 ! P6 ! P1,

thus completing the component.

Observation: The Pk’s are not necessarily distinct.

Case 2: For i = n
2 , . . . ,m� n

2 � 1, the components Tn
2�i, and Tn

2+i can be described in
the following way. Since 1  n

2 + i  m� 1, apply (a) to the point (n2 + i,m) = (j,m).
From part (a), we see that Tn

2+i and Tn
2�i are connected via the line y = �n

2 � i. Note
that for i > n

2 , the points (
n
2 � i,m) and (n2 + i,m) are not in H. However, we use the

points (0, n2 � i +m) and (n2 + i,m + n
2 � i) on Tn

2�i, and Tn
2+i respectively. See that

the line y = n
2 � i+m connects these new points, and the component Tn

2+i = Tn
2�i is

complete.
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(0,0)
(n+m,0)

(n,m)(0,m)

(n/2 + i,m)(n/2 - i,m)

(n/2 + i,n/2 -i + m)(0,n/2 -i + m)

(m,-m) (n+m,-m)

Figure 33: Case 2 with i = 2

Case 3: For i = max{n
2 ,m� n

2}, . . . ,m� 1, the components = Tn
2�i, and Tn

2+i can be
described in the following way. Note that this case only exists if n

2  m� 1. Therefore

m  max{n,m}  n

2
+ i  n

2
+m� 1  2(m� 1)  2m� 1

so we can apply (b) to the point (n2 + i,m) = (j,m). From part (b), we know that Tn
2�i

and Tn
2+i are connected via the line y = n

2 + i�m. Note that for i > max{n
2 ,m� n

2},
the points (n2 � i,m) and (n2 + i,m) are not in H. However, as in Case 2, we use the
points (0, n2 � i +m) and (n2 + i,m + n

2 � i) on Tn
2�i and Tn

2+i respectively. See that
the line y = n

2 � i+m connects these new points, and the component Tn
2+i = Tn

2�i is
complete.
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(0,0) (n+m,0)

(n,m)(0,m)
(n/2 - i,m)

(0,n/2 - i + m)

(n/2 + i,m)

(n/2 + i,n/2 -i + m)

(m,-m) (n+m,-m)

Figure 34: Case 3 with i = 4

Now that we have described the components of the link created by H, let us focus
our attention to counting them. We will show that H has exactly m components by
keeping track of how many times each component uses a horizontal lines across H. In
Case 1, Case 2, and Case 3, each component uses at most two horizontal lines across
H. I claim that there exists a unique i⇤ 2 {n

2 ,
n
2 + 1, . . . , n2 +m � 1} such that Tn

2+i⇤

uses exactly one horizontal line and Tn
2+i uses two distinct horizontal lines for i 6= i⇤.

Take any i 2 {1, 2, . . . ,m � 1}. Suppose i falls under Case 2. Then, Tn
2+i uses the

horizontal lines y1 = �n
2 � i and y2 =

n
2 � i+m. Hence y1 = y2 if and only if n = �m.

However n � 0 so we have reached a contradiction. So if i falls under Case 2, then
Tn

2+i uses two distinct horizontal lines.

Now suppose i falls under Case 3. Then Tn
2+i uses the horizontal lines y1 =

n
2 + i�m

and y2 = n
2 � i +m. Therefore y1 = y2 if and only if i = m. However, for Case 3, we

know that i  m � 1 < m, so we have reached a contradiction. Therefore if i falls
under Case 3, then Tn

2+i uses two distinct horizontal lines.
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Finally, suppose i falls under Case 1. Then Tn
2+i uses the lines

y1 = �1� n

2
� i� 1 or y2 = 1 +

n

2
� i� 1�m

and

y3 = �1� n

2
+ i� 1 or y4 = 1 +

n

2
+ i� 1�m.

Note that y1 < 0, y2 � 0, y3 < 0, and y4 � 0. Therefore y1 6= y2, y1 6= y4, y2 6= y3, and
y3 6= y4. Hence we only need to check for what values of i does y1 = y3 and y2 = y4.
We have y1 = y3 if and only if

�1� n

2
� i� 1 = �1� n

2
+ i� 1

if and only if
0 = 2i.

This implies that either i = 0 or i has order 2 in the group hZ/(2m�1)Z,+i. However,
2 - (2m � 1), therefore |i| 6= 2, and so i = 0. Hence y1 = y3 if and only if i = 0. We
will similarly have T2 = T4 if and only if 0 = 2i if and only if i = 0. In Case 1 we have
0  i  min{m� 1, n2 � 1}. Therefore i⇤ = 0 is the only value such that i⇤ = 0 and is
therefore the only value such that Tn

2+i⇤ uses exactly one horizontal line.

Every horizontal line �(m � 1)  y  m � 1 appears in one and only one compo-
nent. From the work above, Tn

2
used one horizontal line and Tn

2+1, . . . , Tn
2+(m�1) used

two horizontal lines each. This captures all horizontal lines to be used in H. Hence
Tn

2
, Tn

2+1, . . . , Tn
2+(m�1) are the distinct m components of the link created by H.

2. Suppose n is odd. Consider points of the form (j,�(m� 1)), rather than (j,m) as in
the n even case, and let Bj be the component of the link produced by H containing
segments of the lines x = j or x + y = j � (m � 1). Just as Tj = Tk if j = k, where
j denotes j mod (2m � 1), we can show that Bj = Bk if j = k. Therefore we again
have at most 2m� 1 distinct components in the link produced by H, namely

Bm+n�1
2 �(m�1), Bm+n�1

2 �(m�2), . . . , Bm+n�1
2
, Bm+n�1

2 +1, . . . , Bm+n�1
2 +m�1.

As in the n even case, there is symmetry among H. In particular, we will have
Bm+n�1

2 +i = Bm+n�1
2 �i. An example of this can be seen in red for i = 1 in Figure ??

below. This implies that the link in H has at most m components, namely Bm+n�1
2 +i

for i = 0, 1, . . . ,m�1. Using similar arguments to the n even case, we get that Bm+n�1
2

uses exactly one horizontal line and Bm+n�1
2 +1, Bm+n�1

2 +2, . . . , Bm+n�1
2 +m�1 uses two

horizontal lines each, which we know implies that H produces a link with exactly m
components.
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(0,0)

(0,m) (n,m)

(n+m,0)

(n+m,-m)(m,-m)

(m + (n-1)/2 -1, -(m-1)) (m + (n-1)/2 +1, -(m-1))

Figure 35: A 4⇥ 5 saturated stretched hexagon.

In the figures below, we have colored each component a distinct color. For both figures we
indeed have m components.

Figure 36: A 3 ⇥ 6 saturated stretched
hexagon.

Figure 37: A 6 ⇥ 3 saturated stretched
hexagon
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4 Future Work

We end with a few open questions to consider in the future.

1) Does there exist a family of knots whose corona number is realized only when its crossing
number is not?

In the square mosaic case, Evans, Ludwig, and Paat were able to show that there exists a
family of knots whose mosaic number is realized only when their crossing number is not
[3]. Can we doe the same for hexagonal tiles?

2) Can we find an upper bound for the corona number for a specific family of knots?

For example, if K is the composition of n trefoils, does there exist an upper bound for
the corona number of K? What if K is a (p, q) torus knot?

3) Is there a way to restrict our set of hextiles to produce a more interesting knot invariant?

Out of all the knots K whose corona number was established in this paper, all but two
of them had corona number equal to 2. Can we restrict our set of hextiles so that the
knots with 9 or few crossings have a wider range of values for corona number?

4) What kinds of knots are the m components that are produced by an m ⇥ n saturated
stretched hexagon H? Does this di↵er depending on the relationship between m and n?

From Theorem ??, we know H produces a link with m components. If we consider these
m components individually, can we establish what kinds of knots the m components
are? How does this change as H goes from a short and wide hexagon, to a somewhat
proportional hexagon, to a tall and skinny hexagon? Does this depend on where we
decide to use T20 hextiles versus T21 hextiles?

5) Can we measure the “splittability” of the link produced in saturated stretched hexagons?

Note that throughout the proof of Theorem ??, the crossing tiles in the inner board of
H are left ambiguous. Is there a way to suitably connect H with T20 and T21 to reduce
the “splittability” of the link produced in H? A link is splittable if the components of
the link can be deformed do that they lie on di↵erent sides of a plan in three-space [1]

6) What happens when we saturate diagrams of di↵erent shapes: hexagons with three sides
of di↵erent lengths, other irregular polygons?

7) What happens when we saturate polygons in a way that allows crossing tiles on the
perimeter?

Recall that our current definition of saturation does not allow crossing tiles on the perime-
ter. If we allow crossings on the perimeter, will we still get m components? Will H still
have symmetric properties?
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Appendix

Unknot 31 41

52 6151
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716362

747372

777675

28



838281

868584

898887

29



812811810

815814813

818817816

30



821820819

939291

969594
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999897

912911910

915914913

32



919918917

922921920

925924923

33



928927926

931930929

934933932

34



937936935

940939938

943942941
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946945944

949948947
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