
University of California,Santa Barbara

Senior Thesis

Run Time Efficiency and the AKS
Primality Test

Author:

Roeland Singer-Heinze

Supervisor:

Dr. Jeffrey Stopple

May 30, 2013

Abstract. A primality test is an algorithm which determines if any given number is prime.

Until the AKS (Agrawal-Kayal-Saxena) Primality Test was unveiled, there was no previous

test that managed to be concurrently general, unconditional, predictable in behavior, and

have polynomial bound for run time. The original proof of the AKS algorithm showed that

its asymptotic time complexity has a run-time of Õ(log21/2 n), but it is suspected to be

possibly as low as Õ(log6 n). This paper will involve a discussion of the basic proof and

ideas behind the AKS Primality Test. I will also discuss how the speed of the algorithm

affects its runtime efficiency on a computer and why this is important. I will conclude by

studying the latest conjectures and research concerning how the algorithm for the AKS

Primality Test may be improved.

1

Contents

Page

1. Introduction 3

2. Proof of the AKS Algorithm 7

3. Runtime Analysis and Computational Complexity 12

4. References 18

2

1. Introduction

This paper will be a thorough analysis of the AKS Primality Test. Previous primality

proving algorithms were either too laborious to compute in particular cases, or were depen-

dent upon unproven ideas such as the Riemann Hypothesis. The AKS Primality Test is an

elegant solution to this age old problem that dates back to times of Gauss and Fermat. It is

based on the following neat characterization of primes.

Agrawal, Kayal and Saxena. For given integer n ≥ 2, let r be a positive integer less than

n such that the order of n modulo r, or(n), is > log2 n. Then n is prime if and only if

(1) n is not a perfect power,

(2) n has no prime factors ≤ r,

(3) and (x+a)n ≡ xn+a mod (n, xr−1) for each integer a such that 1 ≤ a ≤
√
r log n.

We will explain later what ”order” and ”≡” mean in this context. Noting that here the

congruences are between polynomials of x, and not between two sides evaluated at each

integer x. This characterization of prime numbers may seem overly complicated, but as we

will see, it is a natural development of the ideas behind finding a quick foolproof algorithm

for determining whether a given integer is prime.

One of the key ideas in approaches to primality testing is the Child’s Binomial Theorem.

Theorem (Child’s Binomial Theorem). Let R be a commutative ring of characteristic p > 0

where p is prime. Then for x, y ∈ R we have

(x+ y)p = xp + yp

In particular, for all a, b ∈ Z we have

(a+ b)p ≡ ap + bp mod p

Proof. The proof of the Child’s Binomial Theorem follows from the Binomial Theorem, which

states that for field F with characteristic p, n ∈ Z+, and x, y ∈ F we have

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk

⇒ (x+ y)p =
n∑

k=0

n!

k!(n− k)!
xn−kyk

3

Notice that p divides p!
k!(p−k)!

unless k = p or k = 0 (The fraction would then reduce to 1).

Because F is characteristic p, then the coefficients of all these terms goes to zero and we are

left with

(x+ y)p = xp + yp.

It is straightforward to see then that for a, b ∈ Z that for prime p we have

(a+ b)p ≡ ap + bp mod p.

This is because Zp is the field of integers modulo p, which has characteristic p, and we can

just apply the previous formula. �

This result is interesting as it allows us to deduce another important property.

Theorem (Fermat’s Little Theorem). If p is a prime integer, then p divides ap − a for all

integers a. In other words, we have

ap ≡ a mod p

Proof. We proceed by induction on a ≥ 0. Obviously the base base is when a = 0, and

0p ≡ 0 mod p. Now lets assume that this is true for a = k. Lets show that this is true for

a = k + 1. By the Child’s Binomial Theorem we have that

(k + 1)p ≡ kp + 1p mod p.

By our inductive hypothesis we know that kp ≡ k mod p and trivially we know that 1p = 1.

Thus, it follows that

(k + 1)p ≡ k + 1 mod p.

This concludes our proof of the theorem for a = k + 1. �

Perhaps the first question this theorem raises for us is if this sufficient to distinguish primes

from composites. Unfortunately, it is not since for example,

2341 ≡ 2 mod 341,

but 341 = 11 · 31. However, if we use a = 3 instead of a = 2, we get

3341 ≡ 168 mod 341,

so we are still able to prove that 341 is composite. In this case we would call 341 a Fermat

pseudoprime base 2. The natural question here then would be if there are composite numbers

4

that satisfy Fermat’s Little Theorem no matter what value of a we choose. Lamentably again,

there are since for example,

a1105 ≡ a mod 1105,

for all values of a. Yet 1105 = 5 ·13 ·17, so it is not prime. This is problematic since it means

that there are composite numbers that are Fermat pseudoprimes to any base value, and so

by itself, Fermat’s Little Theorem is not a sufficient primality test. We call these composite

numbers Carmichael numbers.

Definition. A Carmichael number is a composite positive integer n which satisfies Fermat’s

Little Theorem for all base values of a. In other words,

an ≡ a mod n

for all integers a.

It has been proven that there are an infinite amount of Carmichael numbers, so it is not

a problem that can be ignored. Thus we need a method that can determine whether a given

number is prime when we think it is prime. Furthermore, this method must be efficient,

otherwise it would be useless for practical purposes.

In order to prove the main theorem of Agrawal, Kayal, and Saxena, we will need a cou-

ple additional facts from elementary number theory and abstract algebra.

Definition. A perfect power is a number n of the form ak where a > 1, k ≥ 2 are positive

integers.

Definition. We define Euler’s totient function ϕ(n) as the number of positive integers less

than or equal to n that are relatively prime to n.

Theorem. For every finite field Fq, the multiplicative group F∗
q of nonzero elements of Fq is

cyclic.

Proof. Assume that q ≥ 3. Let h = q − 1, the order of F∗
q, and let h = pr11 pr22 · · · prmm be its

prime factor decomposition. Then for each i, 1 ≤ i ≤ m, the polynomial xh/pi − 1 has at

most h/pi roots in Fq. Since h/pi < h, it follows that there are nonzero elements of Fq that

are not roots of this polynomial. We let ai be one of these elements, and set bi = a
h/p

ri
i

i . So

5

then C = 1, and so the order of bi divides prii . Thus it has form psii for some 0 ≤ si ≤ ri.

But since

bh/p
ri−1
i = a

h/pi
i ̸= 1,

then the order of bi is precisely prii .

Now let b = b1b2 · · · bm. We claim that b has order h, which would make it a generator

for the group. Suppose on the contrary that the order of b is a proper divisor of h. Thus it is

a divisor of at least one of the m integers h/pi, with 1/leqi/leqm. Without loss of generality,

say it is h/p1. Therefore,

1 = bh/p1 = b
h/p1
1 b

h/p1
2 · · · bh/p1m .

So then if 2 ≤ i ≤ m, then prii divides h/p1, and so b
h/p1
i . This means b

h/p1
1 = 1. Thus the

order of b1 must divide h/p1, which is impossible since the order of b1 is pr11 . Thus F∗
q is a

cyclic group with generator b. �

6

2. Proof of the AKS Algorithm

Since Fermat’s Little Theorem alone is not a sufficient primality test, then we must ap-

proach the problem from a different angle. This is where the work of Agrawal, Kayal, and

Saxena comes in. Their ideas are based on a result of the Child’s Binomial theorem.

Theorem. An integer n is prime if and only if (x + b)n ≡ xn + b mod n in Z[x] where
gcd(b, n) = 1.

Proof. This follows directly from the Child’s Binomial Theorem. �

A valid primality test then would be to compute (x + b)n − (xn + b) mod n and see if

n divides each coefficients. However, this would be very slow considering that to compute

(x + b)n(mod n), we would need to store n coefficients. To get around the problem of a

high-degree polynomial, one could simply compute the polynomial modulo some small degree

polynomial. This is in addition to computing it modulo n as well. A simple polynomial of

degree r would be xr − 1. All we would need to verify then is that

(x+ b)n ≡ xn + b mod (n, xr − 1) (1)

This is true for any prime n because of our theorem above, and this can be computed fairly

quick. The only question here is whether this fails to hold for all composite n, which would

make this a true primality test. The main theorem of Agrawl, Kayal, and Saxena, which is

stated at the beginning, provides a necessary modification of this congruence. It succeeds

for primes and fails for composites, and is also polynomial time bounded. We now proceed

to prove it.

We assume we are given an odd integer n > 2, which we know is not a perfect power.

Furthermore, for our positive integer r less than n such that or(n) > log2 n, n contains no

primes factors ≤ r. Lastly, the following congruence must hold for each integer a where

1 ≤ a ≤
√
r log n.

(x+ a)n ≡ xn + a mod (n, xr − 1) (2)

We know that if n is prime, then these assumptions hold because of our theorem above. Thus,

we only need to show that if n is composite, then these hypotheses cannot hold. Assume

7

that n is composite and that p is one of its prime factors. Then, by our above congruence

we have that

(x+ a)n ≡ xn + a mod (p, xr − 1). (3)

Now it is possible to factor the polynomial xr−1 into irreducible factors in Z[x] as
∏
d|r

Φd(x).

Φd(x) is the dth cyclotomic polynomial, whose roots are the primitive dth roots of unity, and

each one is irreducible in Z[x]. However, each cyclotomic polynomial Φr(x) might not be

irreducible in (Z/pZ)[x]. So let h(x) be an irreducible factor of Φr(x) mod p. This implies

that

(x+ a)n ≡ xn + a mod (p, h(x)) (4)

The congruence classes mod (p, h(x)) can be seen as elements of the ring F ≡ Z[x]/(p, h(x)).
This is isomorphic to the field of pm elements where m is the degree of h(x). Thus we can see

that the non-zero elements of F form a cyclic group of order pm − 1 and since F contains x,

an element of order r, then r must divide pm−1. Since F is a field, its congruence classes are

much more straightforward than those in (2), whose congruences do not correspond to a field.

Now consider the set H of the elements mod (p, xr − 1) generated multiplicatively by

x + ai where 0 ≤ ai ≤ ⌊
√
r log n⌋. Then let G be the (cyclic) subgroup of F generated

multiplicatively by x + ai. G is cyclic because it is a finite subgroup of the multiplicative

group of F since all of its elements are non-zero. This is because if x + a = 0 in F, then
xn + a = (x + a)n = 0 in F. This implies then that xn = −a = x in F, and that n ≡ 1(

mod r). But then our order d of r equals 1, which is a contradiction to our hypothesis. We

can view G here as the reduction of H mod (p, h(x)).

Consider now that if g(x) =
∏

0≤a≤⌊
√
r logn⌋(x+ a)ea ∈ H, then by (3) we have that

g(x)n =
∏
a

((x+ a)n)ea ≡
∏
a

(xn + a)ea = g(xn) mod (p, xr − 1)

So define S to be the set of positive integers k such that g(xk) ≡ g(x)k mod (p, xr − 1)

for all g ∈ H. It follows then that g(xk) ≡ g(x)k in F for each k ∈ S, and so the Child’s

Binomial Theorem holds for elements of G in this field for any exponent in S. This includes

p and n which are elements of S.

8

To prove our claim we will establish upper and low bounds on the size of G to derive a

contradiction. For the upper bound we first need to prove a couple of lemmas.

Lemma 1. If a, b ∈ S, then ab ∈ S.

Proof. Let g(x) ∈ H. We want to prove that if a, b ∈ S, then g(x)ab ≡ g(xab) mod (p, xr−1).

So since b ∈ S, then g(xb) ≡ g(x)b mod (p, xr − 1). By substituting in xa for x we get

g((xa)b) ≡ g(xa)b mod (p, (xa)r−1). Notice though that xr−1 divides xar−1, and therefore,

our equation is mod (p, xr − 1. Thus,

g(x)ab = (g(x)a)b ≡ g(xa)b ≡ g((xa)b) ≡ g(xab) mod (p, xr − 1)

and so we have obtained the desired result. �

Lemma 2. If a, b ∈ S and a ≡ b mod r, then a ≡ b mod |G|.

Proof. Let g(x) ∈ Z[x]. It is simple to see that u− v divides g(u)− g(v) since if

g(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

then,

g(u)− g(v) = an(u
n − vn) + an−1(u

n−1 − vn−1) + · · ·+ a1(u− v)

and clearly u−v divides every term. So since a ≡ b mod r, then a−b = mr for some integer

m. Thus r divides a − b and so xr − 1 divides xa−b − 1, which divides xa − xb. Therefore

since xa−xb divides g(xa)− g(xb), xr−1 divides g(xa)− g(xb). We deduce that if g(x) ∈ H,

then

g(x)a ≡ g(xa) ≡ g(xb) ≡ g(x)b mod (p, xr − 1).

And if g(x) ∈ G, then g(x)a ≡ g(x)b mod (p, h(x)) which implies that g(x)a−b ≡ 1 in F.
Since G is a cyclic group though, we can take g to be a generator of G and because |G|
divides the order of a generator, then |G| divides a− b. �

We now use the lemmas to establish an upper bound on |G|. Let R be the subgroup of

(Z/rZ)∗ generated by n and p. By our hypothesis, n cannot be a power of p. Therefore

integers of the form nipj with i, j ≥ 0 are distinct. Furthermore, the amount of such integers

with 0 ≥ i, j ≥
√
|R| is greater than |R|. Thus two of these integers must be congruent

modulo r, say

nipj ≡ nlpk mod r.

9

By Lemma 1 these integers are both in S, and by Lemma 2 their difference is divisible by

|G|. Thus we have that

|G| ≤ |nipj − nlpk| ≤ (np)
√

|R| − 1 < n2
√

|R| − 1.

We carefully take notice here that nipj −nlpk is non-zero since n is not a prime nor a perfect

power. This bound, however, can be improved by replacing n above with n/p to get

|G| ≤ n
√

|R| − 1 (5)

as our new upper bound. We only need to show then that n/p ∈ S. So because n has order

d mod r, then nd ≡ 1 mod r. Thus, xnd ≡ x mod (xr − 1). Now suppose that a ∈ S and

that b ≡ a mod (nd − 1). Then we see that xr − 1 divides xnd − x, which divides xb − xa,

which divides g(xb)− g(xa) for any g(x) ∈ H. So by Lemma 1, if g(x) ∈ H, then

g(x)n
d ≡ g(xnd

) mod (p, xr − 1)

because n ∈ S. Thus g(xnd
) ≡ g(x) mod (p, xr − 1), as xr − 1 divides xnd − x, so that

g(x)n
d ≡ g(x) mod (p, xr − 1). But this implies that g(x)b ≡ g(x)a mod (p, xr − 1) since

nd − 1 divides b− a. So we get that

g(xb) ≡ g(xa) ≡ g(x)a ≡ g(x)b mod (p, xr − 1)

as a ∈ S which implies that b ∈ S. Now let b = n/p and a = npϕ(n
d−1)−1 so that a ∈ S by

Lemma 1 since p, n ∈ S. Moreover, b ≡ a mod (nd − 1) so b = n/p ∈ S by the above and

so we got our upper bound.

Now that we have established an upper bound on |G|, lets establish a lower bound. To

derive a contradiction, we want to show that there are many distinct elements of G. So if

f(x), g(x) ∈ Z[x] with f(x) ≡ g(x) mod (p, h(x)), then f(x)− g(x) ≡ h(x)k(x) mod p for

some polynomial k(x) ∈ Z[x]. Therefore, if f and g have smaller degree than h, then k(x) ≡ 0

mod p and so f(x) ≡ g(x) mod p. Thus all polynomials of the form
∏

1≤a≤
√
r logn(x + a)ea

with degree less than the degree of h(x) are distinct elements of G. Hence if the order of p

mod r is large, then we can find an appropriate lower bound on |G|.

To prove that such an r exists is non-trivial and requires tools of analytic number the-

ory. Agrawal, Kayal, and Saxena were later able to replace this term m with |R| in this

10

result. This allowed them to give a much more elementary proof of their theorem, and gives

a stronger result when they do invoke the deeper estimates.

Lemma 3. Suppose that f(x), g(x) ∈ Z[x] with f(x) ≡ g(x) mod (p, h(x)) where the re-

ductions of f and g in F are in G. Then if f and g both have degree less than |R|, then
f(x) ≡ g(x) mod p.

Proof. Let △(y) = f(y) − g(y) ∈ Z[y] be considered as ”reduced” in F. Then if k ∈ S, we

have that

△(xk) = f(xk)− g(xk) ≡ f(x)k − g(x)k ≡ 0 mod (p, h(x)).

As stated before, x has order r in F so then xk : k ∈ R are all distinct roots of △(y)

mod (p, h(x)). Notice now that △(y) has degree < |R|, but has ≥ |R| distinct roots

mod (p, h(x)). Thus △(y) ≡ 0 mod (p, h(x)), and this implies that △(y) ≡ 0 mod p as its

coefficients are independent of x. �

Now, by definition R contains all elements generated by n mod r. Thus R is at least as big

as d, the order of n mod r that is greater than (log n)2 by assumption. Also,
√
r log n, |R| >

B, where B = ⌊
√

|R| log n⌋. By Lemma 3, this implies that the products
∏

a∈T (x+ a) give

distinct elements of G for every proper subset T of 0, 1, 2, . . . , B. Therefore, we get that

|G| ≥ 2B+1 > n
√

|R| − 1,

and this contradicts our upper bound in (5). This concludes our proof of the theorem of

Agrawal, Kayal, and Saxena.

11

3. Runtime Analysis and Computational Complexity

Efficiency is the whole point of devising a primality test. Otherwise, if computational

labour were not a concern, then none of this would even matter. We could simply use

trial division to determine whether a given number is prime or not. Precisely because

such approaches would be impractical, we have to devise a primality testing algorithm that

is computable in a reasonable amount of time. For our purposes here, we will need to

understand a little bit of computational complexity theory.

Definition. A decision problem is any question or problem with a yes or no answer depend-

ing on an arbitrary number of inputs.

We note here that our ”inputs” are integers represented by binary strings.Now our problem

of determining prime numbers is exactly just this. For a given integer, our input, determine

if it is prime or not. The output here would be a yes or no answer, and thus primality testing

falls into the class of decision problems. However, we are interested if this particular decision

problem is computationally feasible. The standard convention for determining whether an

algorithm is feasible if it runs in polynomial time.

Definition. We denote by P the class of decisions problems that can be solved in polynomial

time

Essentially, there exists some polynomial p such that the algorithm runs in at most p(n)

inputs of length n. Our goal here is to prove that there exists a primality algorithm that is

unconditional and deterministic, which resides in the class P .

For runtime analysis we need a tool for analysing our computational complexity. The stan-

dard for such analysis is big-O notation.

Definition. We say a function f(n) is of O(a(n)) complexity if there exists positive constants

M and N such that

|f(n)| ≤ M |a(n)|

for all n ≥ N .

This notation will provide an upper bound on the growth rate of our function. We are

interested in algorithms that are solvable in polynomial time.

12

Definition. An algorithm is solvable in polynomial time if the number of steps to complete

the algorithm for a given input is O(nk) for some positive integer k, where n is the complexity

of the input.

For example, consider if our algorithm f(n) = 3n2+5. We can show that its computational

complexity is O(n2) by choosing M = 4 and N = 3, since for all n ≥ N ,

3n2 + 5 ≤ 4n2.

Before we proceed further we will need one last tool for analysing the time complexity of

our algorithm.

Definition. A function f(n) is of Õ(a(n)) complexity if f(n) is of O(a(n) logk a(n)) com-

plexity.

Essentially this is just a shorthand notation that ignores logarithmic factors since they are

irrelevant to determining whether or not an algorithm is polynomial time bounded (Because

log n < n).

To explain where such logarithmic factors come up in our calculations, we have to first

understand that arithmetic between integers on a computer is done in binary. This is to say

that the size of our input, the number of binary digits, directly impacts the operations upon

these bits. For example, consider two integers, x and y, with no more than n binary digits.

Then obviously, addition and subtraction would take no more than n steps, which would

give us an algorithmic computational complexity of O(n).

The AKS algorithm is of course a bit more complicated, but the idea of using ”bit op-

erations” on the binary numbers remains the same. We can summarize the algorithm in the

following steps.

13

The AKS Primality Test

On input n, where n is a positive integer

(1) If (n = ab for a ∈ N and b > 1), output COMPOSITE.

(2) Find the smallest r such that or(n) > log2 n.

(3) If 1 < gcd(a, n) < n for some a ≤ r, output COMPOSITE.

(4) If n ≤ r, output PRIME.

(5) For a = 1 to ⌊
√

ϕ(r) log n⌋
(6) If ((X + a)n ̸= Xn + a(mod Xr − 1, n)), output COMPOSITE.

(7) Output PRIME

A key part of determining the run time of the algorithm is getting a bound on r. By

computing modulo Xr − 1, we were trying to reduce the amount of terms in the polynomial.

Theorem. For n ≥ 6, there exists an r ∈ [log5 n, 2 log5 n] such that

or(n) > log2 n. (6)

Proof. For easier notation let B = (log n)5. Assume our theorem isn’t true. Then or(n) ≤
(log n)2 for every prime r ∈ [B, 2B], so that their product divides

∏
i≤log2 n(n

i − 1). Now we

know by the prime number theorem, that the product of primes between B and 2B is ≥ 2B.

But then we get that

2B ≤
∏

B≤r≤2B

r ≤
∏

i≤log2 n

(ni − 1) < n
∑

i≤log2 n i < 2log
5 n,

for n ≥ 6, which is a contradiction. �

Now before we prove the time complexity of the algorithm, we summarize some already

known results.

• Let a, b be integers with |a|, |b| ≤ n. Then b mod a can be computed in O(log2 n)

time. By [2], this follows from a recursive division algorithm given in.

14

• Let a, b be integers with |a|, |b| ≤ n. Then ab can be computed in Õ(log n) time.

By [2], this follows from the Fast Fourier Transform algorithm given , which allows

d-digit numbers to be multiplied in O(d log d) time. And since an integer n can be

expressed with ⌈log n⌉ digits, the multiplication runs in

O(d log d) = O(log n log log n) = Õ(log n) (7)

time for |a|, |b| ≤ n.

• Let p(x), q(x) be polynomials with degree less than or equal to r and coefficients with

absolute value less than or equal to n. Then p(x)q(x) can be computed in Õ(r log n)

time. This also follows from the Fast Fourier Transform algorithm applied to poly-

nomials, which allows the product of degree r polynomials to be computed with

O(r log r) = Õ(r) multiplications. Since each of these multiplications takes Õ(log n)

time by (7), then we get a total time complexity of Õ(r log n).

• Let n ≥ 2 be an integer. Then by [2], there is an algorithm that tests if there are

integers a ≥ 2 and b ≥ 2 such that n = ab in Õ(log3 n) time.

Theorem. The AKS algorithm runs in Õ(log21/2 n) time.

Proof. By our summary above, step 1 of the algorithm takes Õ(log3 n) time.

Now for step 2, we can simply try successive values of r until we find one such that nk ̸= 1

mod r for all k ≤ log2 n. For a particular r this would involve at most O(log2 n) multipli-

cations modulo r. Since we are multiply modulo r each product will have factors less than

r. Hence, again by our summary, each multiplication takes Õ(log r) time. Therefore the

computations on each r require Õ(log r) · log2 n = Õ(log r log2 n) time. Now by our previous

theorem, we know that only O(log5 n) different r’s need to be tried. Thus, the total run

time of step 2 is log5 n · Õ(log r log2 n) = Õ(log log5 n log2 n log5 n) = Õ(log7 n) time.

Step 3 requires computing the gcd of r numbers, where r is bounded by our previous theo-

rem. By [2], computing the gcd takes O(log n) time. Therefore, the total time complexity

15

of this step is O(r log n) = O(log6 n).

Step 4 simply compares r and n. This can be done by counting the number of digits in

n and then seeing if r has that many or more. This takes time proportional to the number

of binary digits in n, so it takes about O(log n) time.

Step 5 goes through all values of a from 1 to ⌊
√

ϕ(r) log n⌋. Since ϕ(r) ≤ r − 1 for all

r, as r is prime and all integers less than it are coprime to it, then the time complexity of

the step is O(⌊
√
ϕ(r) log n⌋) = O(

√
r log n).

Finally step 6 computes (X+a)n and Xn+a mod (Xr−1, n). Naively it could take n mul-

tiplications to compute (X+a)n mod (Xr−1, n), but we can do better by squaring (X+a)

mod (Xr − 1, n) ⌊log n⌋ times, which gives us the values of (X + a)2j mod (Xr − 1, n)

for 1 ≤ j ≤ ⌊log n⌋. Hence we can then multiply the appropriate powers of (X + a)2j

mod (Xr − 1, n) to compute (X + a)n mod (Xr − 1, n). This method requires O(log n)

multiplications mod (Xr − 1, n), ⌊log n⌋ to compute the powers of (X + a), and up to

another ⌊log n⌋ to get (X + a)n. Since since each product is taken mod (Xr − 1, n), every

product has factors of degree less than or equal to r. Moreover, every product has factors

with coefficients less than or equal to n. Thus, by our summary from before, each mul-

tiplication takes Õ(r log n) time. This means that computing (X + a)n mod (Xr − 1, n)

takes a total of O(log n) · Õ(r log n) = Õ(r log2 n) time. Because this is computed for ev-

ery value of a in step 5, or O(
√
r log n) times, the total time complexity of this step is

O(
√
r log n) · Õ(r log2 n) = Õ(r3/2 log3 n) time. Since we have bounded r this gives us a

runtime of Õ(r3/2 log3 n) = Õ((log5 n)3/2 log3 n) = Õ(log21/2 n). This time dominates all the

other ones, so the total runtime of our algorithm is indeed (̃ log21/2 n). �

The time complexity of the algorithm may be improved by improving the bounds on r.

The best possible scenario would be when r = O(log2 n) and in that case we would get a

total time complexity of Õ(log6 n). There are a couple conjectures out there that support

this. One of them is the Sophei-Germain conjecture.

Conjecture (Sophie-Germain Prime Density Conjecture). The number of primes q ≤ m

such that 2q + 1 is also a prime is asymptotically 2C2m
log2 m

where C2 is the twin prime constant

16

(estimated to be approximately 0.66). Primes q with this property are called Sophie-Germain

primes.

If this conjecture held, we would be able to conclude that r = Õ(log2 n). By density of

Sophie-Germain primes, there must exist at least log2 n such primes between 8 log2 n and

c log2 n(log log n)2 for suitable constant c. For any such prime q, we would either have that

oq(n) ≤ 2 or oq(n) ≥ q−1
2
. Thus any q such that oq(n) ≤ 2 must divide n2 − 1 and so the

number of such q is bounded by O(log n). So then this implies that there must exist a prime

r = Õ(log2 n) such that or(n) > log2 n. This r would yield a total runtime of Õ(log6 n).

Some progress has been made towards proving this conjecture due to Fouvry.

Lemma 4. Let P (m) denote the greatest prime divisor of m. There exists constants c > 0

and n0 such that, for all x ≥ n0:

|
{
q | q is prime, q ≤ x and P (q − 1) > q2/3

}
|≥ c

x

log x
.

Using this lemma we can derive a better runtime.

Theorem. The asymptotic time complexity of the AKS algorithm is Õ(log15/2 n).

Proof. As argued before, a high density prime q such that P (q − 1) > q2/3 implies that

step 2 of the algorithm will find a r = O(log3 n) with or(n) > log2 n. Using this, the time

complexity of the algorithm is brought down to

Õ(r3/2 log3 n) = Õ((log3 n)3/2 log3 n = Õ(log15/2 n)

�

Recently, Hendrik Lenstra and Carl Pomerance have come up with a modified version of

the AKS algorithm whose time complexity is provably Õ(log6 n).

17

4. References

[1] Andrew Granville. It is Easy to Determine Whether a Given Integer is Prime. Bull.

Amer. Math. Soc. 42 (2005), 3-38 http://ams.org/journals/bull/2005-42-01/S0273-

0979-04-01037-7/.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Preprint. http:

//www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf, November 2006

18

