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Abstract

Strong linearizations of a matrix polynomial P(λ) that preserve some struc-
ture of P(λ) are relevant in many applications. In this paper we character-
ize all the pencils in the family of the Fiedler pencils with repetition, in-
troduced by Antoniou and Vologiannidis, associated with a square matrix
polynomial P(λ) that are symmetric when P(λ) is. When some nonsin-
gularity conditions are satisfied, these pencils are strong linearizations of
P(λ). In particular, when P(λ) is a symmetric polynomial of degree k such
that the coefficients of the terms of degree k and 0 are nonsingular, our
family strictly contains a basis for DL(P), a k-dimensional vector space of
symmetric pencils introduced by Mackey, Mackey, Mehl, and Mehrmann.
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Chapter 1

Introduction

1.1 Motivation and Background Information

Definition 1 A matrix polynomial P(λ) of degree k ≥ 1 is a matrix whose ele-
ments are polynomials, namely,

P(λ) = Akλk + Ak−1λk−1 + · · ·+ A0, (1.1)

where the coefficients Ai are n × n matrices with entries in a field F. A matrix
polynomial is said to be symmetric (Hermitian) if each Ai is symmetric (Hermi-
tian).

Definition 2 The reversal of the matrix polynomial P(λ) in (1.1) is the matrix
polynomial obtained by reversing the order of the coefficient matrices, that is,

rev(P(λ)) :=
k

∑
i=0

λi Ak−i.

Matrix polynomials appear as the focus of various papers and texts as
early as 1958 such as The Theory of Matrix Polynomials and its Application to
the Mechanics of Isotropic Continua by A. J. M. Spencer, and R. S. Rivlin (21),
and there are mathematical results relating to matrix polynomials from as
early as 1878 (17). However, the study of matrix polynomials did not gain
significant traction until the 1980s with the publication of texts such as Ma-
trix Polynomials by I. Gohberg, P. Lancaster, and L. Rodman, (9), The Theory
of Matrices with Applications by P. Lancaster and M. Tismenetsky (17), and
various other texts and papers. Matrix polynomials provide useful tech-
niques for solving problems such as polynomial eigenvalue problems in



2 Introduction

perturbed systems (3) and the study of the mechanics of isotropic continua
(21). Researchers have developed more reliable and faster techniques for
solving linear systems in these situations, so by reducing to a linear case
while preserving relevant information can make many problems signifi-
cantly easier to solve.

To simplify the study of matrix polynomials researchers developed equiv-
alence classes and canonical forms for matrix polynomials. We will call
two matrix polynomials P(λ) and Q(λ) of the same size over the same
field equivalent if there exist two unimodular matrix polynomials (i.e. ma-
trix polynomials with constant nonzero determinant), U(λ) and V(λ), such
that

U(λ)Q(λ)V(λ) = P(λ)

It is shown in (17) that any matrix polynomial P(λ) is equivalent to a unique
diagonal matrix polynomial

A(λ) = diag[i1(λ), i2(λ), . . . , in(λ)]

in which ij(λ) is zero or a monic polynomial, j = 1, 2, . . . , n, and ij(λ) is
divisible by ij−1(λ), j = 2, 3, . . . , n. We call A(λ) the Smith canonical form
of P(λ). H.J.S. Smith obtained this form for matrices with integer entries in
1861 and Frobenius obtained the result for matrix polynomials in 1878. The
ij(λ) are called the invariant factors of P(λ), where the invariance refers to
equivalence transformations, i.e. that two matrix polynomials are equiva-
lent iff they have the same invariant polynomials.

Because a polynomial ring over a field is a UFD we can uniquely (up to
associates) factor each invariant polynomial into irreducible elements. The
largest power of an irreducible element over F[X] that divides an invariant
polynomial of P(λ) is called a (finite) elementary divisor of P(λ). An infinite
elementary divisor of P(λ) is a finite elementary divisor of rev(P(λ)). It is
shown in (17) that two matrix polynomials of the same size over the same
field are equivalent iff they share finite elementary divisors.

Using the previous results, one can determine the Smith canonical form,
eigenvalues, minimal polynomial, characteristic polynomial, invariant poly-
nomials and more from elementary divisors. Because so much of the in-
formation about P(λ) is stored in its elementary divisors, if one can find
another matrix polynomial Q(λ) that has the same elementary divisors but
is simpler to work with, it is often beneficial to work with Q(λ) instead of
P(λ).

Definition 3 A matrix pencil L(λ) = λL1 − L0, with L1, L0 ∈ Mkn(F), is a
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linearization of P(λ) (see (9)) if L(λ) is equivalent to the matrix[
I(k−1)n 0

0 P(λ)

]
.

A linearization L(λ) of a matrix polynomial P(λ) is a strong linearization when
rev(L(λ)) is a linearization of rev(P(λ)).

A linearization L(λ) of a matrix polynomial P(λ) has the same finite el-
ementary divisors as P(λ), and if it is a strong linearization it has the same
infinite elementary divisors as well. Because P(λ) and L(λ) share elemen-
tary divisors we can deduce the invariant polynomials, Smith canonical
form, eigenvalues, minimal polynomial, and characteristic polynomial, of
P(λ) by studying L(λ). This is enough information to solve many of the
problems in which matrix polynomials arrive. In many applications, such
as the polynomial eigenvalue problem P(λ)x = 0, there are standard tech-
niques to find exact or approximate solutions to linear systems that do not
work for matrix polynomials of higher degree. It is therefore often conve-
nient to work with linearizations instead of the original matrix polynomial,
and to derive results about the original matrix polynomial using the prop-
erties shared between it and its linearization.

Depending on the problem, some linearizations will more or less effec-
tive than others, so it is useful to have a large family available. For ex-
ample, it is desirable to have linearizations that are easily constructible.
To ensure this, we will be considering companion forms, that is, nk × nk
strong linearizations LP(λ) = λL1 − L0 of matrix polynomials P(λ) of de-
gree k such that each n × n block of L1 and L0 is either 0n, ±In, or ±Ai,
for i = 0, 1, ..., k, when L1 and L0 are viewed as k × k block matrices (6).
For each matrix polynomial P(λ), many different linearizations can be con-
structed but, in practice, those sharing the structure of P(λ) are the most
convenient from the theoretical and computational point of view, since the
structure of P(λ) often implies some symmetries in its spectrum, which are
meaningful in physical applications and that can be destroyed by numer-
ical methods when the structure is ignored (23). For example, if a matrix
polynomial is real symmetric or Hermitian, its spectrum is symmetric with
respect to the real axis, and the sets of left and right eigenvectors coincide.
Thus, it is important to construct linearizations that reflect the structure of
the original problem. In the literature (2; 4; 6; 12; 13; 19; 20) different kinds
of structured linearizations have been considered: palindromic, symmet-
ric, skew-symmetric, alternating, etc. We will be constructing linearizations
that are symmetric when the matrix polynomial is that are also companion
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forms. Some examples of symmetric linearizations for symmetric matrix
polynomials can be found in (1; 2; 12; 14; 15; 16; 18; 24); however, not all of
these are companion forms.

From the numerical point of view, it is not enough to have lineariza-
tions that preserve the structure of the matrix polynomials. In any compu-
tational problem it is important to take into account its conditioning, i.e. its
sensitivity to perturbations. It is known that different linearizations for a
given polynomial eigenvalue problem can have very different conditioning
(11; 22; 23). This implies that numerical methods may produce quite differ-
ent results for different linearizations. Therefore, it is convenient to have
available a large family of structured linearizations that can be constructed
easily and from which a linearization as well-conditioned as the original
problem can be chosen. To make the linearizations as useful as possible,
we will attempt to find the largest possible family of companion forms that
are symmetric when the original matrix polynomial is.

1.2 History of Fiedler Pencils and DL(P)

Examples of companion forms had been found prior to 1985, (17), but there
were only a few examples, and they did not preserve any sort of structure.
There was also no guarantee that they would preserve the conditioning of
the original matrix polynomial. As a first step towards fixing these prob-
lems, in 2003 M. Fiedler constructed a family of companion forms for reg-
ular matrix polynomials (a matrix polynomial P(λ) is said to be regular if
detP(λ) 6= 0 for almost all λ) now known as Fiedler pencils (7).

Definition 4

M0 :=
[

I(k−1)n 0
0 −A0

]
, M−k :=

[
Ak 0
0 I(k−1)n

]
,

and

Mi :=


I(k−i−1)n 0 0 0

0 −Ai In 0
0 In 0 0
0 0 0 I(i−1)n

 , i = 1, . . . , k− 1. (1.2)

The matrices Mi in (1.2) are always invertible and their inverses are
given by
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M−i := M−1
i =


I(k−i−1)n 0 0 0

0 0 In 0
0 In Ai 0
0 0 0 I(i−1)n

 .

The matrices M0 and M−k are invertible if and only if A0 and Ak, re-
spectively, are.

Definition 5 Let i = (i1, i2, . . . , in) be a permutation of (1, 2, . . . , n). Then the
matrix polynomial

λM0 −Mi1 Mi2 . . . Min

with the Mi as defined above is called the Fiedler pencil of the matrix polynomial
P(λ) with respect to i.

Fiedler pencils are easy to construct and retain many of the properties
of the original matrices; however, they are a (relatively) small family of
linearizations with only a n! elements, and still do not preserve structure.
For example, there are no linearizations in the family of Fiedler pencils that
are guaranteed to be symmetric when P(λ) is. The construction of Fiedler
pencils led to the construction of much larger and more useful families of
companion forms, starting with the discovery of generalized Fiedler pen-
cils in 2004 by E. N. Antoniou and S. Vologiannidis (1; 2).

Definition 6 (1) If I is a permutation of a set of indices, I = {i0, i1, . . . , in} we
will let MI = Mi1 Mi2 . . . Min . Let {C0, C1} be a partition of {0, 1, . . . k} and let
I0 and I1 be permutations of C0 and −C1. Then the pencil

K(λ) = λMI0 −MI1

is the generalized Fiedler pencil with respect to (I0, I1) with the Mi as defined
above.

In (1; 2) it was shown that there exists a companion form L(λ) for P(λ)
that is symmetric when P(λ) is, as well as a linearization that is alternating
when P(λ) is (a matrix polynomial is called alternating if AT

i = (−1)i Ai
for all i). However, there are still not very many structure preserving lin-
earizations in this family. Generalized Fiedler pencils give many options
for trying to match conditioning, or an option to preserve structure, but
in general cannot do both. Generalized Fiedler pencils are also only com-
panion forms for regular matrix polynomials, limiting their use. In 2011 E.
N. Antoniou and S. Vologiannidis extended the family again, this time to
Fiedler pencils with repetition (24).
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Definition 7 (24) We say that a tuple t = (i1, i2, . . . , ir) with entries from (0, 1, . . . , k)
satisfies the SIP if for every pair of indices ia, ib ∈ t with ia = ib, and 0 ≤ a <
b ≤ r there exists at least one c such that ic = ia + 1 and a < c < b.

Definition 8 (24) Let P(λ) be a matrix polynomial of degree k with A0 and Ak
non-singular. Let 0 ≤ h ≤ k − 1, let q be a permutation of {0, 1, . . . , h} and
m be a permutation of {−k,−k + 1, . . . ,−h − 1}. Let lq and rq be tuples with
entries from (0, 1, . . . , h− 1)} such that (lq, q, rq) satisfies the SIP. Let lm and rm
be tuples with entries in (−k,−k + 1, . . . ,−h− 2) such that (lm, m, rm) satisfies
the SIP. Then the pencil

L(λ) = λMlm Mlq Mm Mrq Mrm −Mlm Mlq Mq Mrq Mrm

is a Fiedler pencil with repetition (FPR) associated with P(λ).

It is worth noting that the condition that A0 and Ak are non-singular is
only needed for certain FPRs, so if we restrict ourselves to a subset of all
possible FPRs (discussed later) we can avoid the non-singularity conditions
that appear above and in other literature between 2004 and 2011. The main
accomplishments of this generalization were this reduction of constraints
on the non-singularity conditions, and finding more linearizations that are
structure preserving, specifically symmetric linearizations for symmetric
matrix polynomials. In (24) some symmetric linearizations in the family
of FPR are found; however, not all of them are listed in the literature. In
this paper we will find necessary and sufficient conditions for a FPR to be
a symmetric linearization, expanding on the previous list.

In 2006 it was shown that it is possible to create vector spaces of pencils,
almost all of which are linearizations for a given regular matrix polynomial,
specifically L1(P), L2(P), andDL(P) (18).

Definition 9 We will first introduce the notation

VP = {v⊗ P(λ) : v ∈ Fk

We then define

L1(P) = {L(λ) = λX + Y : X, Y ∈ Fnk×nk, L(λ) · (Λ⊗ In) ∈ VP}

where Λ denotes the vector [λk−1, λk−1, . . . λ, 1]T.
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Similarly, define

WP = {wT ⊗ P(λ) : w ∈ Fk}

and

L2 = {{L(λ) = λX + Y : X, Y ∈ Fnk×nk, (ΛT ⊗ In) · L(λ) ∈ WP}

We then define DLP = L1 ∩L2.

These are significant because from linearizations in L1(P) one can de-
duce the left eigenvectors of P(λ) and from L2(P) one can deduce the right
eigenvectors of P(λ) so from linearizations in DL(P) one can deduce both
the left and right eigenvectors for P(λ). Furthermore, a pencil in DL(P) is
symmetric whenever P(λ) is. We note that in (24) it is shown that, if the
matrix coefficients A0 and Ak of the matrix polynomial P(λ) are nonsin-
gular, the family of FPR includes k symmetric linearizations presented in
(14; 15; 16), which form a basis of the k-dimensional vector space of sym-
metric pencils DL(P) studied in (18; 12). Note that, though any pencil in
DL(P) is symmetric when P(λ) is, it is not necessarily a linearization of
P(λ). Moreover, any symmetric pencil in L1(P) is in DL(P).

Although symmetric linearizations for symmetric matrix polynomials
have been found, from example 8 in (24) the family of symmetric strong
linearizations among the FPR includes linearizations that had not appeared
in the literature before. In particular these linearizations are not in DL(P).
While in (24) only a few examples were constructed, in this paper, we char-
acterize all the pencils in the family of Fiedler pencils with repetition which
are symmetric when the associated matrix polynomial P(λ) is. Though not
every pencil in this family is a linearization of P(λ), we give the conditions
under which they are strong linearizations. In particular, when A0 and Ak
are both nonsingular, the family of symmetric strong FPR linearizations in
the FPR that we construct extends the basis of the space DL(P) signifi-
cantly, as Example 59 shows for k = 4. Notice that in this case we get 10
linearly independent linearizations. It remains an open problem to deter-
mine the dimension of the vector space of symmetric pencils generated by
our FPR linearizations, though it is clear from Theorem 57 that this dimen-
sion is always greater than the degree k of the matrix polynomial. Notice
that, applying this theorem for k ≥ 3 taking w = (1 : 2, 0), rw = (1) and
tw = ∅ (z can be any admissible tuple), we get an example of a strong lin-
earization that is not in L1 and, therefore, not in DL(P). This follows since
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the matrix coefficient of the term of degree 0 of this pencil contains at least
one identity block and the matrix coefficient of the term of degree 1 does
not contain any block equal to −In.

1.3 Structure of the paper

In section 2 we will introduce tuples and prove some basic theorems re-
lating to them. We will introduce terminology that is used throughout the
paper, and prove various results that we will use as tools later. It is an
overview of known properties that will be useful to prove original results
later on. In section 3 we will start to study properties of symmetric tuples.
In particular, we will characterize the tuples that are relevant to creating
symmetric linearizations that are FPRs. We will do this by first defining
properties of tuples that will determine if an FPR can be constructed from
them. We will then find all tuples with these conditions that are symmetric,
such that the corresponding FPR will be symmetric. Finally, we will define
a canonical form on our tuples, so that after reduction to the canonical form
no two tuples will correspond to the same FPR. The results in this section
are all original work. In section 4 we will go over known properties of FPR,
and demonstrate the connection between FPR and the tuples discussed in
section 3. In section 5 we will relate our work on symmetric tuples to sym-
metric FPR and prove our main result, a complete description of FPR that
are symmetric (Hermitian) strong linearizations when the matrix polyno-
mial P(λ) is.
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Index Tuples

We call an index tuple any ordered tuple whose entries are integers.
In this section we introduce some definitions and results for index tu-

ples. In particular, we define an equivalence relation in the set of index
tuples and give a canonical form under this equivalence relation. We also
give some notation that will be used throughout the paper.

2.1 General definitions and notation

For the purposes of this paper, it is important to distinguish between index
tuples in which the entries are repeated or not. This justifies the following
definition.

Definition 10 Let t = (i1, i2, . . . , ir) be an index tuple. We say that t is simple
if ij 6= il for all j, l ∈ {1, 2, . . . , r}, j 6= l.

If i, j are integers such that j ≥ i, we denote by (i : j) the tuple (i, i +
1, i + 2, . . . , j). If j < i, (i : j) denotes the empty tuple. We will refer to the
simple index tuple (i : j), j ≥ i, consisting of consecutive integers, as a
string.

If i, j are integers such that j ≤ i, we denote by
(
i :↓ j

)
the tuple (i, i −

1, i− 2, . . . , j). If j > i,
(
i :↓ j

)
denotes the empty tuple.

Definition 11 Let t1 and t2 be two index tuples. We say that t1 is a subtuple of t2
if t1 = t2 or if t1 can be obtained from t2 by deleting some indices in t2. If i1, . . . , ir
are distinct indices, we call the subtuple of t1 with indices from {i1, . . . , ir} the
subtuple of t1 obtained by deleting from t1 all indices distinct from i1, . . . , ir.



10 Index Tuples

Example 12 Let t = (1, 2, 1, 3, 2, 3) be viewed as a tuple with indices from {1, 2, 3, 4}.
The subtuple of t with indices from {1, 2} is (1, 2, 1, 2); the subtuple of t with in-
dices from {3, 4} is (3, 3).

Note that in a subtuple of an index tuple, the indices keep their original
relative positions, that is, the order of the indices in the subtuple is not
altered with respect to the order of those indices in the original tuple.

Given an index tuple t = (i1, . . . , ir) and an integer a, we denote by a+ t
the index tuple (a + i1, . . . , a + ir).

Given an index tuple t, we call the number of elements in t the length
of t and denote it by |t|. We denote by t[j] the tuple obtained from t by
deleting the last j elements (counting from the right).

Definition 13 Let t = (a : b) be a string and l = |t|. If l > 1, we call the
reverse-complement of t the index tuple trevc := (t[1], . . . , t[l − 1]). If l = 1,
the reverse-complement of t is empty.

Example 14 The reverse-complement of t = (0 : 6) is trevc = (0 : 5, 0 : 4, 0 :
3, 0 : 2, 0 : 1, 0); the reverse-complement of t = (0) is empty.

Definition 15 Given an index tuple t = (i1, . . . , ir), we define the reversal tuple
of t as rev(t) := (ir, . . . , i1).

Let t1 and t2 be two index tuples. Some immediate properties of the
reversal operation are:

• rev(rev(t1)) = t1,

• rev(t1, t2) = (rev(t2), rev(t1)).

2.2 Equivalence of tuples

We define an equivalence relation in the set of index tuples with indices
from a given set of either nonnegative or negative integers.

Definition 16 We say that two nonnegative indices i, j commute if |i− j| 6= 1.

Definition 17 Let t and t′ be two index tuples of nonnegative integers. We say
that t is obtained from t′ by a transposition if t is obtained from t′ by interchang-
ing two commuting indices in adjacent positions.
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Definition 18 Given two index tuples t1 and t2 of nonnegative integers, we say
that t1 is equivalent to t2 if t2 can be obtained from t1 by a sequence of transposi-
tions. If t1 and t2 are index tuples of negative indices, we say that t1 is equivalent
to t2 if −t1 is equivalent to −t2. If t1 and t2 are equivalent index tuples, we write
t1 ∼ t2,

Note that the relation ∼ is an equivalence relation.

Example 19 The index tuples t1 = (2, 5, 3, 1, 4) and t2 = (5, 2, 3, 4, 1) are equiv-
alent.

Remark 20 Note that if t1 and t2 are equivalent tuples with indices from {i, i +
1}, where i is a nonnegative integer, then t1 = t2.

Observe that, if j is an integer and t1 and t2 are equivalent index tuples,
then so are j + t1 and j + t2.

The next proposition will be very useful in the proofs of our results.

Proposition 21 Let t1 and t2 be two index tuples with indices from a set S of
nonnegative (resp. negative) integers. Then, t1 and t2 are equivalent if and only if,
for each i ∈ S, the subtuples of t1 and t2 with indices from {i, i + 1} are the same.

Proof. If t1 and t2 are equivalent then they contain the same indices with
the same multiplicities, and, since i and i + 1 do not commute, the stated
subtuples are the same. For the converse, assume that t1 and t2 are not
equivalent. If t1 and t2 do not have the same indices, clearly for some i ∈ S
the subtuples with indices from {i, i + 1} are distinct. Now suppose that t1
and t2 have the same indices. Let k be the first position (starting from the
left) in which t1 and t2 differ and no transposition applied to the indices of
t2 to the right of position k − 1 can transform the index in position k into
the corresponding index in t1, say i. Since, by applying transpositions on t2,
we cannot find an equivalent tuple with i in position k (and the elements in
the positions before k are equal in both tuples) this means that i− 1 or i + 1
appears to the right of position k− 1 and to the left of the first i after position
k in t2. But this implies that either the subtuples of t1 and t2 with indices
from {i, i− 1} or the subtuples of t1 and t2 with indices from {i, i + 1} are
different.

The next example illustrates the application of Proposition 21.

Example 22 Consider the tuples t1 = (1, 5, 4, 2) and t2 = (5, 1, 2, 4) with in-
dices from S = {1, 2, 4, 5}. For each i ∈ S, the subtuples of t1 and t2 with indices
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from {i, i+ 1} coincide and are given by (1, 2) if i = 1, (2) if i = 2, (5, 4) if i = 4,
and (5) if i = 5. Thus, by Proposition 21, t1 and t2 are equivalent. Now consider
the tuples t1 = (5, 6, 25) and t2 = (5, 6, 30) with indices from S = {5, 6, 25, 30}.
Clearly, the subtuples of t1 and t2 with indices from {i, i + 1}, when i = 25, do
not coincide. Thus, by Proposition 21, t1 and t2 are not equivalent.

The next result is an easy consequence of the previous proposition and
will be used in the proofs of our results.

Lemma 23 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq, l′q, r′q be
tuples with indices from {0, 1, . . . , h − 1}. Then, (lq, q, rq) ∼ (l′q, q, r′q) if and
only if lq ∼ l′q and rq ∼ r′q.

Proof. Clearly, if lq ∼ l′q and rq ∼ r′q then (lq, q, rq) ∼ (l′q, q, r′q). Now we
prove the converse. Suppose that (lq, q, rq) ∼ (l′q, q, r′q). We prove that
rq ∼ r′q. The proof of lq ∼ l′q is similar. By Proposition 21, it is enough
to show that, for any index i ∈ {0, . . . , h − 1}, the subtuples of rq and r′q
with indices from {i, i + 1} are the same. First we prove that rq and r′q have
precisely the same indices.

In order to get a contradiction, assume that i ≤ h− 1 is the largest index
such that the subtuples of rq and r′q with indices from {i} have different
lengths. Let m denote the number of indices equal to i + 1 in rq and r′q
(which can be 0). By Proposition 21, the subtuples of (lq, q, rq) and (l′q, q, r′q)
with indices from {i, i + 1} are the same, which gives a contradiction as the
number of i′s occurring to the right of the (m + 1)th index equal to i + 1,
counting from the right, is different in both tuples.

Thus, we conclude that rq and r′q have precisely the same indices. Since,
by Proposition 21, for each i < h, the subtuples of (lq, q, rq) and (l′q, q, r′q)
with indices from {i, i + 1} are the same, also the corresponding subtuples
of rq and r′q are the same. Again by Proposition 21, the claim follows.

We now extend the definition of commuting indices to index tuples.

Definition 24 Let t1 and t2 be two index tuples of nonnegative (resp. negative)
integers. We say that t1 and t2 commute if every index in t1 commutes with every
index in t2.

Note that, if t1 and t2 commute, then, for every index i in t1, i − 1 and
i + 1 are not in t2. In particular, if t1 and t2 commute then (t1, t2) ∼ (t2, t1).
Also, if t′1 and t′2 are subtuples of the commuting tuples t1 and t2, then t′1
and t′2 commute.
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2.3 Successor Infix Property and column standard form

In this paper we are interested in index tuples satisfying the property called
SIP that we define below. In the case of tuples of nonnegative indices sat-
isfying this property, we also give a canonical form under the equivalence
relation defined in the previous section. Expressing the index tuples sat-
isfying the SIP in this canonical form is an important tool for proving our
main results.

Definition 25 (24) Let t = (i1, i2, . . . , ir) be an index tuple of nonnegative (resp.
negative) indices. Then, t is said to satisfy the Successor Infix Property (SIP) if
for every pair of indices ia, ib ∈ t, with 1 ≤ a < b ≤ r, satisfying ia = ib, there
exists at least one index ic = ia + 1 with a < c < b.

Remark 26 We observe that the SIP is invariant under equivalence. Moreover,
any subtuple consisting of adjacent indices from an index tuple satisfying the SIP
also satisfies the SIP. Additionally, if a tuple t satisfies the SIP, so does rev(t) and
a + t for any integer a.

We now give a canonical form under equivalence for a tuple of nonneg-
ative integers satisfying the SIP. Note that Definition 25 was presented for
arbitrary tuples, not necessarily with nonnegative indices, as for the defini-
tion of the symmetric linearizations we will need it in that general form.

Definition 27 (24) Let t be an index tuple with indices from {0, 1, . . . , h}, h ≥ 0.
Then t is said to be in column standard form if

t = (as : bs, as−1 : bs−1, . . . , a2 : b2, a1 : b1) ,

with h ≥ bs > bs−1 > · · · > b2 > b1 ≥ 0 and 0 ≤ aj ≤ bj, for all j = 1, . . . , s.
We call each subtuple of consecutive integers (ai : bi) a string in t.

The connection between the column standard form of an index tuple
and the SIP is shown in the following result.

Lemma 28 (24) Let t = (i1, . . . , ir) be an index tuple with indices from {0, 1, . . . , h},
h ≥ 0. Then t satisfies the SIP if and only if t is equivalent to a tuple in column
standard form.

Taking into account Proposition 21, it follows that two tuples in column
standard form are equivalent if and only if they coincide. We then have the
following definition.
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Definition 29 The unique index tuple in column standard form equivalent to an
index tuple t satisfying the SIP is called the column standard form of t and is
denoted by cs f (t).

Note that, in particular, if t is simple, then t satisfies the SIP and, there-
fore, t is equivalent to a tuple in column standard form. In this case, if t is a
permutation of {0, 1, . . . , h}, the column standard form of t has the form

cs f (t) = (tw + 1 : h, tw−1 + 1 : tw, . . . , t2 + 1 : t3, t1 + 1 : t2, 0 : t1)

for some positive integers 0 ≤ t1 < t2 < . . . < tw < h.



Chapter 3

Symmetric Index Tuples

In this section we consider index tuples that are symmetric.

Definition 30 We say that an index tuple t of nonnegative (resp. negative) in-
dices is symmetric if t ∼ rev(t).

Observe that any tuple equivalent to a symmetric tuple is also symmet-
ric.

We are interested in symmetric tuples of the form (lq, q, rq) satisfying
the SIP, where q is a permutation of {0, 1, . . . , h}, lq and rq are tuples (possi-
bly not simple) with indices from {0, 1, . . . , h− 1}, and (lq, rq) is also sym-
metric. We characterize the symmetric tuples of this kind and give a new
canonical form under equivalence for them. The canonical form we present
will be used in the construction of the symmetric linearizations.

3.1 The S and the SS properties

Here we introduce some properties of symmetric tuples that will be very
useful in proving our results. We focus on nonnegative tuples but all the
results in this section can be extended to tuples of negative indices as well.

Definition 31 Let t be a tuple with indices from {0, 1, ..., h}, h ≥ 0. We say that
t has the S property if, for every index i ∈ t with i < h, the subtuple of t with
indices from {i, i + 1} is symmetric. In particular, if for every index i ∈ t with
i < h such that i + 1 ∈ t, the subtuple of t with indices from {i, i + 1} is of the
form (i, i + 1, i, i + 1, ..., i + 1, i) or (i + 1, i, i + 1, ..., i, i + 1), we say that t has
the SS property.
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Lemma 32 Let t be a tuple with indices from {0, 1, . . . , h}, h ≥ 0. Then, t is
symmetric if and only if t has the S property.

Proof. If t is symmetric, then it is clear that t has the S property. Now
assume that t is not symmetric in order to see that t does not satisfy the
S property. Since t and rev(t) are not equivalent, by Proposition 21, there
is i ∈ t such that the subtuples of t and rev(t) with indices from {i, i +
1} are distinct. Thus, the subtuple of t with indices from {i, i + 1} is not
symmetric, which implies the result.

In order to characterize the index tuples (lq, q, rq) which are symmetric
and such that (lq, rq) is also symmetric, we start by considering the case
when lq and rq are disjoint tuples (that is, have no common indices).

Lemma 33 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and let lq, rq be dis-
joint tuples with indices from {0, 1, ..., h − 1} such that (lq, q, rq) or (lq, rq) is
symmetric. Then, lq and rq commute.

Proof. We observe that there is no index i such that either i ∈ lq and i + 1 ∈
rq or i ∈ rq and i+ 1 ∈ lq, as, otherwise, the subtuple of (lq, q, rq) (or (lq, rq))
with indices from {i, i + 1} would not be symmetric, (as its first and last
elements would be different), a contradiction by Lemma 32.

Next we characterize, in terms of the SS property, the index tuples (lq, q, rq)
satisfying the SIP, with lq and rq disjoint and such that both (lq, q, rq) and
(lq, rq) are symmetric. Note that if (lq, rq) is symmetric and lq and rq are
disjoint, from Lemmas 32 and 33, lq and rq are symmetric as well.

Lemma 34 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and let lq, rq be dis-
joint tuples with indices from {0, 1, ..., h− 1} such that (lq, q, rq) satisfies the SIP.
Then, (lq, q, rq) and (lq, rq) are both symmetric if and only if (lq, q, rq) has the SS
property.

Proof. Assume that (lq, q, rq) has the SS property, which implies that (lq, q, rq)
has the S property. Then, by Lemma 32 and taking into account that, for ev-
ery i ∈ {0, 1, . . . , h− 1}, the subtuple of q with indices from {i, i + 1} is of
the form (i, i + 1) or (i + 1, i), the result follows.

Assume now that (lq, q, rq) and (lq, rq) are both symmetric. Let i ∈
{0, 1, . . . , h − 1}. By the SIP, the subtuple j of (lq, q, rq) with indices from
{i, i + 1} cannot have two adjacent i’s. We next show that j cannot have
two adjacent elements equal to i + 1 either. Assume it does. Since q only
contains one index i + 1 and lq and rq are disjoint, we have either i + 1 ∈ lq
or i + 1 ∈ rq. Suppose that i + 1 ∈ rq (which implies that i + 1 /∈ lq). The
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argument is analogous if i + 1 ∈ lq. By Lemma 33, i /∈ lq. Let p be the
smallest positive integer such that the entries in positions p and p + 1 in
j are i + 1. Note that p ≥ 2, since q contains one i and one i + 1. Also,
the entry in position p− 1 in the subtuple of rq with indices from {i, i + 1}
(which is the entry in position p + 1 in the subtuple j) is i + 1. Because
(lq, rq) is symmetric and i, i + 1 /∈ lq, by Lemma 32, the subtuple of rq with
indices from {i, i + 1} is symmetric. Thus, the (p− 1)th element counting
from right to left in rq (and, therefore, in j) is i + 1. Since, by Lemma 32, the
subtuple j is also symmetric, we would get that the entry in position p− 1
in j is i + 1, a contradiction. Thus, we have shown that, in the subtuple
j, the indices i and i + 1 alternate. Since, by Lemma 32, the subtuple j is
symmetric, the first and last entry of j are equal and the result follows.

3.2 Admissible Tuples

Here we introduce the concept of admissible tuple which will allow us to
find a new canonical form under equivalence for symmetric tuples of the
form (lq, q, rq). This canonical form will be very useful in the construction
of symmetric linearizations.

Definition 35 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0. We say that q is
an admissible tuple relative to {0, 1, . . . , h} if the sequence of the lengths of the
strings in cs f (q) is of the form (2, ..., 2, l + 1), where l ≥ 0. We call l the index of
q.

From now on, in order to make our statements clearer, we will associate
to an arbitrary permutation of {0, 1, . . . , h} the letter q and to an admissible
tuple the letter w.

Example 36 Here we give some examples of admissible index tuples.

• w1 = (6 : 7, 4 : 5, 0 : 3) is an admissible tuple with index 3 relative to
{0, . . . , 7}.

• w2 = (5 : 6, 3 : 4, 1 : 2, 0) is an admissible tuple with index 0 relative to
{0, . . . , 6}.

Note that if w is an admissible tuple with index l relative to {0, 1, ..., h},
then h and l have the same parity.

In the next definition we construct an index tuple that, when appended
to an admissible tuple, produces a symmetric index tuple. We use the no-
tation for the reverse-complement of a tuple introduced in Definition 13.
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Definition 37 (Symmetric complement) Let w be an admissible tuple with index
l relative to {0, 1, . . . , h}, h ≥ 0. We call the symmetric complement of w the
tuple rw defined as follows:

• rw = (h− 1, h− 3, ...., l + 3, l + 1, (0 : l)revc), if l ≥ 1,

• rw = (h− 1, h− 3, ...., 1), if l = 0.

Example 38 The symmetric complements of the tuples w1 and w2 given in Ex-
ample 36 are

rw1 = (6, 4, 0 : 2, 0 : 1, 0) and rw2 = (5, 3, 1),

respectively.

We next show that, if w is an admissible index tuple and rw is the sym-
metric complement of w, then (w, rw) is symmetric. We need the following
auxiliary result.

Proposition 39 The reverse-complement of the string t = (0 : l), l ≥ 1, is
symmetric and satisfies the SIP.

Proof. Since trevc is in column standard form, by Lemma 28, it satisfies the
SIP. The rest of the proof is by induction on l. If l = 1, the result holds
trivially. Now suppose that l > 1. Let ri = (0 : i), i = 0, . . . , l − 1, so
that trevc = (rl−1, . . . , r0). Note that (0 : l − 1)revc = (rl−2, . . . , r0). By the
induction hypothesis,

(rl−2, . . . , r0) ∼ rev(rl−2, . . . , r0).

Then,

rev(trevc) = (rev(rl−2, . . . , r0), rev(rl−1))

∼ (rl−2, . . . , r0, l − 1 :↓ 0)
∼ (rl−2, l − 1, rl−3, l − 2, . . . , r0, 1, 0) = trevc ,

where the last equivalence follows from the commutativity relations for
indices.

Lemma 40 Let w be an admissible tuple with index l relative to {0, 1, . . . , h},
h ≥ 0. Let rw be the symmetric complement of w. Then, (w, rw) is symmetric and
satisfies the SIP. Moreover, rw is symmetric.
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Proof. The fact that (w, rw) satisfies the SIP follows from the definition of
rw and Proposition 39. Also, by Proposition 39 and taking into account the
commutativity relations for indices, it follows that the tuple rw is symmet-
ric.

Now we show that (w, rw) is symmetric. Assume that cs f (w) = (Bs, . . . , B0),
where Bi, i = 0, . . . , s, are the strings of cs f (w). We prove the result by in-
duction on s. If s = 0 the claim follows from Proposition 39 taking into
account that (w, rw) is the reverse complement of (0 : h + 1). Now sup-
pose that s > 0. Then, w′ = (Bs−1, . . . , B0) is an admissible tuple. Let
rw′ be the symmetric complement of w′. Note that Bs = (h − 1 : h) and
rw ∼ (rw′ , h− 1). Thus,

(w, rw) ∼ (h− 1, h, w′, rw′ , h− 1)

So, we have

rev(w, rw) ∼ (h− 1, rev(w′, rw′), h, h− 1)
∼ (h− 1, w′, rw′ , h, h− 1)
∼ (h− 1, h, w′, rw′ , h− 1)
∼ (w, rw),

where the second equivalence follows from the induction hypothesis and
the third equivalence follows because the largest index in (w′, rw′) is h− 2
and, therefore, h commutes with any index in (w′, rw′).

Remark 41 Note that, if w is an admissible tuple with indices from {0, 1, ..., h},
h < k, and rw is the corresponding symmetric complement, then (−k + w,−k +
rw) and −k + rw are symmetric.

3.3 Reduction to the Admissible Case

In this section we first prove that every symmetric index tuple of the form
(lq, q, rq) satisfying the SIP and such that (lq, rq) is symmetric is equiva-
lent to an index tuple of the form (rev(t), l∗q , q, r∗q , t) with l∗q and r∗q disjoint.
Then we show that (l∗q , q, r∗q) is equivalent to an index tuple of the form
(rev(t′), w, rw, t′), where w is an admissible tuple and rw is the associated
symmetric complement.

Lemma 42 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be tuples
with indices from {0, 1, ..., h − 1} such that (lq, q, rq) satisfies the SIP. Suppose
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that (lq, q, rq) and (lq, rq) are symmetric. Then, there exist unique (up to equiva-
lence) index tuples t, l∗q , r∗q , with indices from {0, . . . , h− 1}, such that l∗q and r∗q
are disjoint and

(lq, q, rq) ∼ (rev(t), l∗q , q, r∗q , t). (3.1)

Moreover,
lq ∼ (rev(t), l∗q) rq ∼ (r∗q , t), (3.2)

and (l∗q , q, r∗q) and (l∗q , r∗q) are symmetric.

Proof. Assume that lq and rq are not disjoint, otherwise the existence claim
follows with t = ∅, l∗q = lq, and r∗q = rq. Let lq = (i1, l′q) for some index
i1 and some index tuple l′q. Then, because (lq, q, rq) is symmetric, we have
(lq, q, rq) ∼ (i1, l′q, j, i1), for some tuple j. Therefore, if i1 /∈ rq, then j ∼
(q′, rq), where q′ is the subtuple obtained from q by deleting the index i1,
and i1 commutes with rq. Repeating this argument, we get that any index
in lq on the left of the first index in both lq and rq, say j, should commute
with j. Thus, since lq and rq are not disjoint, we can commute the indices in
lq in order to have in the first position on the left an index in both lq and rq.
So, assume that i1 ∈ rq. Moreover, because (lq, q, rq) is symmetric, we have
rq ∼ (r′q, i1) for some index tuple r′q. Thus,

(lq, q, rq) ∼ (i1, l′q, q, r′q, i1).

Clearly, (l′q, q, r′q) and (l′q, r′q) are symmetric. Applying this argument in-
ductively, we get a tuple of the claimed form. By Lemma 23, (3.2) follows.
By (3.1), (3.2) and Lemma 32, (l∗q , q, r∗q) and (l∗q , r∗q) are symmetric.

Finally, we prove the uniqueness of t, l∗q , r∗q . Suppose that (lq, q, rq) is
equivalent to another tuple (rev(t′′), l′′q , q, r′′q , t′′), where l′′q and r′′q are dis-
joint. By Lemma 23, rq ∼ (r′′q , t′′) ∼ (r∗q , t). Analogously, lq ∼ (rev(t′′), l′′q ) ∼
(rev(t), l∗q). Since l∗q and r∗q (resp. l′′q and r′′q ) are disjoint, it follows that the
indices in t (resp. t′′) are precisely those indices, counting multiplicities,
that occur in both lq and rq. Thus, t′′ and t have the same indices. Because
(r′′q , t′′) ∼ (r∗q , t), by Proposition 21, t′′ ∼ t and r′′q ∼ r∗q . Similarly, it can be
deduced that l′′q ∼ l∗q .

Example 43 Let q = (6, 3 : 5, 2, 0 : 1), lq = (3 : 5, 1 : 2, 0 : 1) and rq = (3 :
4, 2 : 3, 0 : 1). It is easy to check that (lq, q, rq) and (lq, rq) are both symmetric
index tuples. Note that lq and rq are not disjoint. We have

lq ∼ ((3), (4 : 5, 1 : 2, 0 : 1)) and rq ∼ ((3 : 4, 2, 0 : 1), (3)).
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Then,

(4 : 5, 1 : 2, 0 : 1) ∼ ((4), (5, 1 : 2, 0 : 1)) and (3 : 4, 2, 0 : 1) ∼ ((3, 2, 0 : 1), (4)).

Also,

(5, 1 : 2, 0 : 1) ∼ ((1), (5, 2, 0 : 1)) and (3, 2, 0 : 1) ∼ ((3, 2, 0), (1)).

After two more steps, we conclude that

lq ∼ ((3, 4, 1, 2, 0), (5, 1)) and rq ∼ ((3), (0, 2, 1, 4, 3)).

Thus, (3.1) holds with t = (0, 2, 1, 4, 3), l∗q = (5, 1), and r∗q = (3).

In the previous lemma we expressed the tuple (lq, q, rq) in the form
(rev(t), l∗q , q,
r∗q , t) with l∗q and r∗q disjoint. Next we find an admissible tuple w such that
(l∗q , q, r∗q) ∼ (rev(t′), w, rw, t′), where rw is the symmetric complement of w.

Lemma 44 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be disjoint
tuples with indices from {0, ..., h − 1}. Suppose that (lq, q, rq) is a symmetric
tuple satisfying the SIP and (lq, rq) is symmetric. Then, there exist an admissible
tuple w relative to {0, 1, ..., h} and an index tuple t with indices from {0, . . . , h−
1} such that

(lq, q, rq) ∼ (rev(t), w, rw, t) (3.3)

and
(lq, rq) ∼ (rev(t), rw, t), (3.4)

where rw is the symmetric complement of w.

Proof. In order to make the proof clearer, we assume h ≥ 2. For h < 2
the result can be easily checked. The proof is by induction on the number
of strings in cs f (q). Let cs f (q) = (Bs, ..., B1, B0), where Bi, i = 0, 1, .., s,
are the strings of cs f (q). Assume that s = 0, that is, cs f (q) has only one
string. Then, q = (0 : h), which is an admissible tuple. Note that, because
of the SIP, lq = ∅. Let r′q be the symmetric complement of q. By Lemma 40,
(q, r′q) satisfies the SIP, is symmetric, and r′q is symmetric. We now show
that rq ∼ r′q, which implies the result. By Lemma 34, (q, rq) and (q, r′q)
satisfy the SS property. By Proposition 21, it is enough to show that for
any 0 ≤ i < h, the subtuples of rq and r′q with indices from {i, i + 1} are
the same. Note that in both tuples the first and last indices are equal to i.
Because of the SIP, h− 1 occurs exactly once in rq and r′q. Then, h− 2 occurs
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exactly twice. In general, h− k occurs exactly k times in rq and r′q. Thus, the
claimed subtuples of rq and r′q with indices from {i, i + 1} coincide for each
i, which implies, by Proposition 21, that rq ∼ r′q.

Assume now that s > 0, that is, cs f (q) has more than one string. Note
that, by Lemma 33, lq and rq commute. In the rest of the proof we use some
notation introduced in Subsection 2.1.

Case 1: Suppose that q = (h :↓ 0). Then, by Lemma 34, the subtuple of
(lq, q, rq) with indices from {h− 1, h} must be of the form (h− 1, h, h− 1),
since (h, h− 1) is a subtuple of q. Thus, h− 1 ∈ lq. Note that, because of
the SIP, lq has at most one index equal to h− 1. Applying Lemma 34 to the
subtuple of (lq, q, rq) with indices from {h− 2, h− 1}, we deduce that the
subtuple of lq with indices from {h − 2, h − 1} is (h − 2, h − 1, h − 2). By
repeating this argument we conclude that lq ∼ (l′q, h − 1 :↓ 0), for some
tuple l′q ⊂ {0, . . . , h− 2}. Since rq and lq are disjoint and have indices from
{0, . . . , h− 1}, we deduce that rq = ∅. Because lq = (lq, rq) is symmetric, it
follows that

lq ∼ (0 : h− 2, l′′q , h− 1 :↓ 0),

for some symmetric tuple l′′q ⊂ {0, . . . , h− 3}. Note that, because of the SIP,
h− 1, h− 2 /∈ l′′q . Therefore,

(lq, q, rq) ∼ (0 : h− 2, l′′q , h− 1 :↓ 0, h :↓ 0)

∼ (0 : h,
(

l′′q , h− 2 :↓ 0
)

, h− 1 :↓ 0).

Because (lq, q, rq) is symmetric, so is (l′′q , h− 2 :↓ 0). Thus, the tuple (l′′q , h−
2 :↓ 0) satisfies the conditions of the theorem. By the induction hypoth-
esis, there exist an admissible tuple w∗ relative to {0, 1, ..., h − 2} and an
index tuple t∗ with indices from {0, 1, ..., h− 3} such that (l′′q , h− 2 :↓ 0) ∼
(rev(t∗), w∗, r∗w, t∗), where r∗w is the symmetric complement of w∗ and l′′q ∼
(rev(t∗), r∗w, t∗). Then,

(lq, q, rq) ∼ (0 : h, rev(t∗), w∗, r∗w, t∗, h− 1 :↓ 0)
∼ (0 : h− 2, rev(t∗), (h− 1 : h, w∗), (r∗w, h− 1), t∗, h− 2 :↓ 0),

and (3.3) holds with t = (t∗, h− 2 :↓ 0), rw = (h− 1, r∗w) and w = (h− 1 :
h, w∗). Condition (3.4) can be easily verified.

Case 2: Suppose that Bs = (h) and |Bi| > 1 for some i = 0, . . . , s− 1. Let
j < s be the largest integer such that |Bs| = · · · = |Bs−j| = 1. Then,

cs f (q) = (h :↓ h− j, h− r : h− j− 1, Bs−j−2, ..., B0),
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for some r > j+ 1. By Lemma 34, using an argument similar to that in Case
1, lq ∼ (l′q, h− 1 :↓ h− j− 1), for some tuple l′q ⊂ {0, . . . , h− 2}. Note that,
because of the SIP, h− 1 /∈ l′q. Since (lq, rq) is symmetric and, by Lemma 33,
lq and rq commute, we have that lq is also symmetric, which implies

lq ∼ (h− j− 1 : h− 2, l′′q , h− 1 :↓ h− j− 1),

for some symmetric tuple l′′q ⊂ {0, . . . , h− 3}. Note that, by the SIP, h− 1 /∈
l′′q . Also, for j > 0, again by the SIP, h − 2 /∈ l′′q ; when j = 0 the same
conclusion follows from the symmetry of lq. Therefore,

(lq, q, rq) ∼ (h− j− 1 : h− 2, l′′q , h− 1 :↓ h− j− 1, q, rq)

∼ (h− j− 1 : h,
(

l′′q , h− 2 :↓ h− j− 1, B′s−j−1, Bs−j−2, ..., B0, rq

)
, h− 1 :↓ h− j− 1),

where B′s−j−1 := Bs−j−1[1]. Observe that, since lq and rq commute, so do
(h− 1 :↓ h− j− 1) and rq. As lq and rq are disjoint and h− 1 ∈ lq, by Lemma

33, h− 2, h− 1 /∈ rq. Thus, the tuple
(

l′′q , h− 2 :↓ h− j− 1, B′s−j−1, Bs−j−2, ..., B0, rq

)
satisfies the conditions of the theorem. By the induction hypothesis, there
exist an admissible tuple w∗ relative to {0, 1, ..., h− 2} and an index tuple
t∗ with indices from {0, 1, ..., h− 3} such that(

l′′q , h− 2 :↓ h− j− 1, B′s−j−1, Bs−j−2, ..., B0, rq

)
∼ (rev(t∗), w∗, r∗w, t∗)

and (l′′q , rq) ∼ (rev(t∗), r∗w, t∗), where r∗w is the symmetric complement of
w∗. Then,

(lq, q, rq) ∼ (h− j− 1 : h, rev(t∗), w∗, r∗w, t∗, h− 1 :↓ h− j− 1)

∼ (h− j− 1 : h− 2, rev(t∗), (h− 1 : h, w∗), (r∗w, h− 1), t∗, h− 2 :↓ h− j− 1),

and (3.3) holds with t = (t∗, h − 2 :↓ h − j − 1), rw = (h − 1, r∗w) and
w = (h− 1 : h, w∗). Condition (3.4) can be easily verified.

Case 3: Suppose that Bs = (h − r : h), for some r ≥ 1. By Lemma
34, using an argument similar to that in Case 1, rq ∼ (h− r : h− 1, r′q) for
some tuple r′q ⊂ {0, . . . , h− 2}. Because (lq, rq) is symmetric and lq and rq
commute, the index tuple rq is symmetric, which implies

rq ∼ (h− r : h− 1, r
′′
q , h− 2 :↓ h− r),

for some symmetric tuple r′′q ⊂ {0, . . . , h − 3}. Note that, because of the
SIP, h− 1 /∈ r′′q . For r > 1, again by the SIP, h− 2 /∈ r′′q ; for r = 1 the same
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conclusion follows from the symmetry of rq. Therefore,

(lq, q, rq) ∼ (lq, h− r : h, Bs−1, h− r : h− 2, Bs−2, ..., B0, h− 1, r′q)

∼ (h− r : h, lq, (Bs−1, h− r : h− 2, Bs−2, ..., B0), r′′q , h− 1 :↓ h− r).

Observe that, since lq and rq commute, so do (h− r : h− 1) and lq. Also,
since h− 1 is not in lq, h commutes with lq. As lq and rq are disjoint and h−
1 ∈ rq, by Lemma 33, h− 2, h− 1 /∈ lq. Thus, by the induction hypothesis,
there exist an admissible tuple w∗ relative to {0, 1, ..., h− 2} and an index
tuple t∗ with indices from {0, 1, ..., h− 3} such that

(lq, (Bs−1, h− r : h− 2, Bs−2, ..., B0), r′′q ) ∼ (rev(t∗), w∗, r∗w, t∗)

and (lq, r′′q ) ∼ (rev(t∗), r∗w, t∗), where r∗w is the symmetric complement of
w∗. Then,

(lq, q, rq) ∼ (h− r : h, rev(t∗), w∗, r∗w, t∗, h− 1 :↓ h− r)
∼ (h− r : h− 2, rev(t∗), (h− 1 : h, w∗), (r∗w, h− 1), t∗, h− 2 :↓ h− r),

and (3.3) holds with t = (t∗, h − 2 :↓ h − r), rw = (h − 1, r∗w) and w =
(h− 1 : h, w∗). Condition (3.4) can be easily verified.

Example 45 Consider the tuples lq, q, rq given in Example 43. We showed that

(lq, q, rq) ∼ ((rev(0, 2, 1, 4, 3), (5, 1), (6, 3 : 5, 2, 0 : 1), 3, (0, 2, 1, 4, 3)).

We also have

((5, 1), (6, 3 : 5, 2, 0 : 1), 3) ∼ ((5 : 6, 3 : 5, 1 : 2, 0 : 1), 3) ∼ ((5 : 6, 3 : 4, 1 : 2, 0), (5, 1, 3)).

Thus,

(lq, q, rq) ∼ ((rev(0, 2, 1, 4, 3), (5 : 6, 3 : 4, 1 : 2, 0), (5, 1, 3), (0, 2, 1, 4, 3)).

Note that (5 : 6, 3 : 4, 1 : 2, 0) is an admissible index tuple and (5, 3, 1) is the
corresponding symmetric complement.

The next theorem is the main result of this section and provides a full
characterization of the symmetric tuples (lq, q, rq) satisfying the SIP, with
(lq, rq) symmetric, in terms of admissible tuples.

Theorem 46 Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be in-
dex tuples with indices from {0, 1, ..., h − 1} such that (lq, q, rq) satisfies the
SIP. Then, (lq, q, rq) is a symmetric tuple, with (lq, rq) symmetric, if and only
if there exist an admissible tuple w relative to {0, 1, .., h} and a tuple t with in-
dices from {0, 1, ..., h− 1} such that (lq, q, rq) ∼ (rev(t), w, rw, t) and (lq, rq) ∼
(rev(t), rw, t), where rw is the symmetric complement of w.
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Proof. Assume that (lq, q, rq) is a symmetric tuple, with (lq, rq) symmetric.
Then, the claim follows from Lemmas 42 and 44.

The converse follows from the fact that, by Lemma 40, (w, rw) and rw
are symmetric.

Taking into account the previous theorem, to obtain all possible sym-
metric tuples (lq, q, rq) satisfying the SIP and such that (lq, rq) is symmetric,
it is enough to consider all admissible tuples w and all tuples t such that
(rev(t), w, rw, t) satisfies the SIP, where rw is the symmetric complement of
w. Next we characterize all tuples t with such property.

Definition 47 Let w be an admissible tuple relative to {0, 1, . . . , h}, h ≥ 0, and
rw be the symmetric complement of w. We say that a tuple t with indices from
{0, . . . , h− 1} is w-compatible if, for any index i occurring in both rw and t, the
subtuple of t with indices from {i, i + 1} starts with i + 1.

Lemma 48 Let w be an admissible tuple relative to {0, . . . , h}, h ≥ 0. Let rw be
the symmetric complement of w and t be a tuple with indices from {0, . . . , h− 1}.
Then, (rev(t), w, rw, t) satisfies the SIP if and only if

i) t satisfies the SIP

ii) t is w-compatible.

Proof. Assume that (rev(t), w, rw, t) satisfies the SIP. By Remark 26, con-
dition i) holds. Condition ii) follows because, by definition of rw, for any
index i in rw, the subtuple of rw with indices from {i, i + 1} finishes with i.

Assume that t satisfies the SIP and is w-compatible. Since (w, rw) and
t satisfy the SIP, it is enough to check that between any two indices equal
to i, one appearing in (w, rw) and the other in t, there is an index i + 1. But
this follows from ii). Note that if i < h is in w but not in rw then i + 1 is in
rw.

Note that if (rev(t), w, rw, t) satisfies the SIP, because h− 1 is in rw and
h is neither in t nor in rw, then h− 1 is not in t.

The next example describes, up to equivalence, all tuples t such that
(rev(t), w,
rw, t) satisfies the SIP, for a given admissible tuple w.

Example 49 Consider the admissible tuple w = (5 : 6, 3 : 4, 0 : 2) and its
symmetric complement rw = (5, 3, 0, 1, 0). We describe, up to equivalence, the
tuples t with indices from {0, . . . , 5} such that (rev(t), w, rw, t) satisfies the SIP.
Note that 5 /∈ t.
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Suppose that 4 ∈ t. Then, because 5 /∈ t and t satisfies the SIP, 4 occurs exactly
once. Thus the subtuple of t with indices from {4} is of the form

(4).

Suppose that 3 ∈ t. Then, because 3 ∈ rw, by Lemma 48, 4 ∈ t and occurs
before the first occurrence of 3. Thus, the subtuple of t with indices from {3, 4} is
of the form

(4, 3).

Suppose that 2 ∈ t. If 3 ∈ t, by the previous case, the subtuple of t with indices
from {2, 3, 4} has one of the following forms:

(2, 4, 3), (2, 4, 3, 2), (4, 3, 2).

If 3 /∈ t, the subtuple with indices from {2, 3, 4} has one of the following forms:

(2), (2, 4).

Suppose that 1 ∈ t. Then, by Lemma 48, 2 ∈ t occurs before the first occur-
rence of 1. Thus, the subtuple of t with indices from {1, 2, 3, 4} has one of the
following forms:

(2, 1, 4, 3), (2, 1, 4, 3, 2), (2, 1, 4, 3, 2, 1),
(2, 4, 3, 2, 1), (4, 3, 2, 1), (2, 1), (2, 1, 4).

Finally, suppose that 0 ∈ t. Then, by Lemma 48, 1 ∈ t occurs before the first
occurrence of 0. Thus, the subtuple of t with indices from {0, 1, 2, 3, 4} has one of
the following forms:

(2, 1, 0, 4, 3), (2, 1, 0, 4, 3, 2), (2, 1, 0, 4, 3, 2, 1),
(2, 1, 4, 3, 2, 1, 0), (2, 1, 0, 4, 3, 2, 1, 0), (2, 4, 3, 2, 1, 0),
(4, 3, 2, 1, 0), (2, 1, 0), (2, 1, 4, 0).

The twenty three displayed tuples are all possible tuples t, up to equivalence, such
that (rev(t), w, rw, t) satisfies the SIP.



Chapter 4

Fiedler pencils with repetitions

Let P(λ) be an n× n matrix polynomial of degree k as in (1.1). The family
of Fiedler pencils with repetition (FPR) was defined in (24). In this paper,
we describe the FPR that are symmetric when P(λ) is.

We start by defining the matrices Mi(P), depending on the coefficients
of the matrix polynomial P(λ), which appear as factors of the coefficients
of a FPR. These matrices Mi(P) are presented as block matrices partitioned
into k× k blocks of size n× n. Unless the context makes it ambiguous, we
will denote these matrices by Mi instead of Mi(P).

Recall that we have defined

M0 :=
[

I(k−1)n 0
0 −A0

]
, M−k :=

[
Ak 0
0 I(k−1)n

]
,

and

Mi :=


I(k−i−1)n 0 0 0

0 −Ai In 0
0 In 0 0
0 0 0 I(i−1)n

 , i = 1, . . . , k− 1. (4.1)

The matrices Mi in (??) are always invertible and their inverses are
given by

M−i := M−1
i =


I(k−i−1)n 0 0 0

0 0 In 0
0 In Ai 0
0 0 0 I(i−1)n

 .
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The matrices M0 and M−k are invertible if and only if A0 and Ak, re-
spectively, are.

Let t = (i1, i2, . . . , ir) be an index tuple with indices from {0, 1, ..., k −
1,−1
, ...,−k}. We denote Mt := Mi1 Mi2 · · ·Mir . If t is empty, then Mt = Ikn. We
also use the following notation: revtr(Mt) = MT

i1 · · ·M
T
ir .

Remark 50 It is easy to check that the commutativity relations

Mi(P)Mj(P) = Mj(P)Mi(P), for any P(λ), (4.2)

hold if and only if ||i| − |j|| 6= 1.

Next we show that, for two tuples t1 and t2 satisfying the SIP, Mt1(P) =
Mt2(P) if and only if t1 ∼ t2. We start with a technical lemma.

Lemma 51 Let B = (a : b) be a string, with 0 ≤ a ≤ b < k, and suppose that
b > a if a = 0. Let T = In(k−q−1) ⊕ T0 and T′ = In(k−q−1) ⊕ T′0, with q < b, be
two nk× nk block-partitioned matrices which differ at least in the block in position
(i, j) for some k − q + 1 ≤ i ≤ k and k − q ≤ j ≤ k. Then, the products MBT
and MBT′ have the forms In(k−q−2)⊕ T1 and In(k−q−2)⊕ T′1, for some matrices T1
and T′1, and differ at least by the block in position (s, j) for some k− q ≤ s ≤ k.

Proof. A calculation shows that

MB =



In(k−b−1) 0 0 · · · 0
0 −Ab 0
... −Ab−1

...
...

... I
...

0 −Aa 0
0 In 0 · · · 0 0
0 0 0 · · · 0 In(a−1)


, (4.3)

if a 6= 0, and

MB =



In(k−b−1) 0 0 · · ·
0 −Ab

−Ab−1
...

... I
0 −A1
0 −A0 0 0


, (4.4)
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if a = 0. Let i, j be as in the statement. Note that the matrix MB has exactly
one block In in the ith column, say in row s. In fact, we have either s = i− 1
or s = i. Moreover, in the sth row of MB all the blocks are 0 except possibly
the one in column k− b. Since the blocks in position (k− b, j) in T and T′

are zero, it follows that the products MBT and MBT′ differ by at least the
block in position (s, j). Note that k− q ≤ s ≤ k, proving the claim.

Lemma 52 Let t1 and t2 be two index tuples with the same indices from {0, 1, . . . , h},
0 ≤ h < k. Assume that t1 and t2 satisfy the SIP. Then, t1 is equivalent to t2 if
and only if Mt1(P) = Mt2(P) for any matrix polynomial P(λ) of the form (1.1).

Proof. By Remark 50, the matrices Mi and Mj commute for any matrix
polynomial P(λ) if and only if the indices i and j commute. Thus, if t1 ∼ t2,
then Mt1 = Mt2 .

Assume now that Mt1(P) = Mt2(P) and t1 and t2 are not equivalent.
Let cs f (t1) = (Bm1 , ..., B1, B0) and cs f (t2) = (B̃m2 , ..., B̃1, B̃0). Let r be the
largest positive integer such that Bm1−i+1 = B̃m2−i+1, i = 1, . . . , r. Then,
MBm1 ,...,Bm1−r+1 = MB̃m2 ,...,B̃m2−r+1

. Since t1 and t2 have the same indices, we

deduce that (Bm1−r, ..., B0) and (B̃m2−r, ..., B̃0) have the same indices as well.
By the SIP, the largest index in a tuple occurs exactly once, and, by defini-
tion of column standard form, it appears in the first string (counting from
left to right). Assume that Bm1−r = (a : b) and B̃m2−r = (a′ : b) with a 6= a′.
Note that MBm1−r is of the form (4.3) if a 6= 0, and of the form (4.4) if a = 0.
Since b > i for all i ∈ (Bm1−r−1, ..., B0), we have that MBm1−r−1,...,B0 is of the
form [

In(k−b) 0
0 ?

]
.

Therefore, the matrix M1 := MBm1−r ,...,B0 is of the form

In(k−b−1) 0 0 0
0 −Ab ? 0
0 −Ab−1 ? 0
...

...
...

...
0 −Aa ? 0
0 In ? 0
0 0 0 ?
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if a 6= 0, and of the form

In(k−b−1) 0 0
0 −Ab ?
0 −Ab−1 ?
...

...
...

0 −A1 ?
0 −A0 ?


,

if a = 0. A similar form can be obtained for M2 := MB̃m2−r ,....,B̃0
. Since

a 6= a′, we deduce that MBm1−r ,...,B0 6= MB̃m2−r ,.... ˜,B0
. Clearly, if MBm1,...,Bm1−r+1

is nonsingular, which happens if 0 is not an index in (Bm1 , ..., Bm1−r+1) or
A0 is nonsingular, we have Mt1 6= Mt2 . However, otherwise, this fact is
not immediate. To prove it, note that there is a block in position (i, j), with
k− b + 1 ≤ i ≤ k and j = k− b, by which M1 and M2 differ. By Lemma 51,
MBm1−r+1 M1 and MB̃m2−r+1

M2 are of the form In(k−b−2) ⊕ T0 and In(k−b−2) ⊕
T′0, respectively, for some matrices T0 and T′0, and differ by the block in
position (s, j) for some k − b ≤ s ≤ k. Now apply Lemma 51 again, with
B = Bm1−r+2, T = MBm1−r+1 M1 and T′ = MB̃m2−r+1

M2. After r − 2 more
steps, we conclude that Mt1(P) and Mt2(P) are distinct.

Remark 53 We observe that the previous lemma holds if t1 and t2 are tuples sat-
isfying the SIP and with the same indices from {−k,−k + 1, . . . ,−1}.

We recall the definition of the family of FPR.

Definition 54 (FPR). Let P(λ) be a matrix polynomial of degree k, as in (1.1).
Let h ∈ {0, 1, . . . , k− 1} . Let q and z be permutations of {0, 1, . . . , h} and
{−k,−k + 1, . . . ,−h− 1} , respectively. Let lq and rq be index tuples from
{0, 1, . . . , h− 1} such that (lq, q, rq) satisfies the SIP. Let lz and rz be index tuples
from {−k,−k + 1, . . . , − h− 2} such that (lz, z, rz) satisfies the SIP. Then, the
pencil

λMlq,lz,z,rz,rq −Mlq,lz,q,rz,rq (4.5)

is called a Fiedler pencil with repetition (FPR) associated with P(λ).

We observe that Mlq and Mrq commute with each factor in Mlz Mz Mrz .
Analogously, Mlz and Mrz commute with each factor in Mlq Mq Mrq .

A FPR as in (4.5) can be expressed as Mlq,lz(λMz−Mq)Mrq,rz . The pencil
λMz − Mq is a proper generalized Fiedler pencil (1; 2). It is known that,
given a matrix polynomial P(λ), any proper generalized Fiedler pencil is a
strong linearization of P(λ) (5). Therefore, we have the following result.
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Lemma 55 Let P(λ) be a matrix polynomial (regular or singular). Let L be a FPR
as in (4.5). Then, L is a strong linearization of P(λ), unless one of the following
conditions holds:

i) 0 is an index in lq or rq and A0 is singular;

ii) −k is an index in lz or rz and A−k is singular.

Thus, in order to obtain our linearizations we will require that none of
the conditions i) and ii) in Lemma 55 hold and, in this case, we will say that
the FPR L satisfies the nonsingularity conditions.

We finish this section by observing that in (24) the coefficients of the FPR
are products of the matrices RMiR, instead of Mi, where R is the nk × nk
matrix

R :=

 0 In

. . .

In 0

 . (4.6)

Therefore, if the linearizations in Definition 54 are multiplied on the left
and on the right by the matrix R, the linearizations constructed in (24) are
obtained.





Chapter 5

Symmetric Linearizations

In Theorem 57 in this section we characterize all FPR that are symmetric
when the matrix polynomial P(λ) of degree k is. We observe that an analog
of Theorem 57 holds in the Hermitian case. Namely, if P(λ) is a Hermitian
matrix polynomial of degree k of the form (1.1), then the pencil P(λ) given
in (5.1) is a Hermitian strong linearization of P(λ), provided that L(λ) sat-
isfies the nonsingularity conditions. The proof of this claim is similar to the
one of Theorem 57, noting that a result analog to Lemma 56 holds in the
Hermitian case, that is, if t is a tuple as in the lemma, then Mt is Hermitian
for any Hermitian P(λ) of degree k if and only if t is symmetric.

Recall that P(λ) is symmetric if and only if AT
i = Ai, i = 0, 1, ..., k. Thus,

when P(λ) is symmetric, the matrices Mi and M−i defined in Section 4 are
symmetric for i = 0, 1, ..., k.

We start with a technical lemma. Recall the notation introduced in Sec-
tion 4.

Lemma 56 Let t be a tuple with indices from {0, 1, ..., h}, 0 ≤ h < k. Then, Mt
is a symmetric matrix for any symmetric matrix polynomial P(λ) of degree k if
and only if t is symmetric.

Proof. Assume that t is symmetric. Then, by Lemma 52, Mt = Mrev(t),
which implies MT

t = revtr(Mrev(t)) = revtr(Mt) = Mt, where the last
equality follows from the fact that P(λ) is symmetric.

Assume now that Mt is symmetric. Then, Mt = MT
t = revtr(Mrev(t)) =

Mrev(t). Then, by Lemma 52 again, the result follows.
Consider the FPR L(λ) given in (4.5), associated with the matrix poly-

nomial P(λ), as in (1.1). Then, L(λ) is symmetric if and only if

(Mlq,lz,z,rz,rq)
T = Mlq,lz,z,rz,rq
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and
(Mlq,lz,q,rz,rq)

T = Mlq,lz,q,rz,rq ,

or, equivalently,

(Mlq,rq)
T = Mlq,rq , (Mlz,z,rz)

T = Mlz,z,rz ,

and
(Mlz,rz)

T = Mlz,rz , (Mlq,q,rq)
T = Mlq,q,rq .

Taking into account Lemma 56, it follows that L(λ) is symmetric for any
P(λ) if and only if (lq, q, rq), (lq, rq), (lz, z, rz), and (lz, rz) are symmetric.
Thus, because of Theorem 46 and Lemma 48, the following result produces
all symmetric FPR strong linearizations of a symmetric matrix polynomial
P(λ).

Theorem 57 Let P(λ) be a symmetric matrix polynomial of degree k of the form
(1.1) and 0 ≤ h < k. Let w and w′ be admissible tuples relative to {0, . . . , h}
and {0, . . . , k− h− 1}, respectively. Let rw, rw′ be the symmetric complements of
w and w′, respectively. Let tw ⊂ {0, . . . , h− 1} and tw′ ⊂ {0, . . . , k − h− 2}
be index tuples satisfying the SIP and such that tw is w -compatible and tw′ is
w′-compatible. Let z = −k + w′, rz = −k + rw′ and tz = −k + tw′ . Then, the
pencil

L(λ) = λMrev(tw),rev(tz),z,rz,tz,rw,tw −Mrev(tw),rev(tz),w,rz,tz,rw,tw (5.1)

is a symmetric FPR. Moreover, if L(λ) satisfies the nonsingularity conditions,
then L(λ) is a strong linearization of P(λ).

Proof. By Lemma 48 and Remark 26, the tuples (rev(tw), w, rw, tw) and
(rev(tz), z, rz, tz) satisfy the SIP. Thus, (5.1) is a FPR. We now show that the
pencil L(λ) is symmetric. Note that

L(λ) = λMrev(tz,tw)Mz,rz,rw Mtz,tw −Mrev(tz,tw)Mw,rw,rz Mtz,tw .

Since P(λ) is symmetric, we have MT
i = Mi, i = 0, . . . , k − 1 and MT

−i =
M−i, i = 1, ..., k. Thus, L(λ) is symmetric if

L′(λ) = λMz,rw,rz −Mw,rw,rz (5.2)

is symmetric. Taking into account Lemma 56, L′(λ) is symmetric if (w, rw),
(z, rz), rw and rz are symmetric, which holds by Lemma 40 and Remark 41.
The second claim follows from Lemma 55.
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Table 5.1 Example 59

w rw tw
0 ∅ ∅

(0:1) (0) ∅
(0:2) (0:1,0) ∅

(1:2, 0) (1) ∅ , (0)
(0:3) (0:2, 0:1, 0) ∅

(2:3,0:1) (2, 0) ∅, (1), (1,0)

Remark 58 When k is even and both coefficients A0 and Ak of P(λ) are both
singular, no pencil L(λ) given in Theorem 57 satisfies the nonsingularity condi-
tions, since h and k − h − 1 cannot be both even and, therefore, either w or w′

has odd index, which implies that either −k is in rz or 0 is in rw. Thus, in this
case there are no symmetric FPR that are strong linearizations of P(λ). If k is even
and not both A0 and Ak are singular, Theorem 57 produces symmetric strong lin-
earizations. In fact, if A0 is singular and Ak is nonsingular, by choosing h even,
w of index 0 and tw not containing 0, the pencil (5.1) satisfies the nonsingularity
conditions. If A0 is nonsingular and Ak is singular, by choosing h odd (so that
k− h− 1 is even), w′ of index 0 and tw′ not containing 0, the pencil (5.1) satisfies
the nonsingularity conditions. When k is odd Theorem 57 produces symmetric
strong linearizations for any symmetric P(λ) of degree k.

We finish this section with an application of Theorem 57.

Example 59 Let P(λ) be a symmetric matrix polynomial of degree k = 4. We
construct all possible symmetric strong linearizations of P(λ) in the family of
FPR. We assume that A0 (resp. A−k) is invertible if 0 is an index in (rw, tw) (resp.
−k is an index in (rz, tz)), so that each given pencil satisfies the nonsingularity
conditions. The possible admissible tuples w and their corresponding symmetric
complements are given in Table 5.1. We also give the possible w-compatible tuples
tw in each case. In Table 5.2, we give the possible tuples z, rz, and tz.

Thus, the appropriate combination of the tuples in Tables 5.1 and 5.2 produces,
in total, ten distinct symmetric FPR.

Next we give the explicit expression of these pencils. We first list the four
linearizations in the basis of DL(P) given in (18).
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Table 5.2 Example 59

z rz tz
-4 ∅ ∅

(-4:-3) (-4) ∅
(-4:-2) (-4:-3, -4) ∅

(-3:-2, -4) (-3) ∅ , (-4)
(-4:-1) (-4:-2, -4:-3, -4) ∅

(-2:-1, -4:-3) (-2, -4) ∅, (-3), (-3, -4)

• Let w = (0), tw = ∅, z = (−4 : −1), tz = ∅. Then, we get

L(λ) = λ


0 0 0 A4
0 0 A4 A3
0 A4 A3 A2

A4 A3 A2 A1

−


0 0 A4 0
0 A4 A3 0

A4 A3 A2 0
0 0 0 −A0

 .

• Let w = (0 : 1), tw = ∅, z = (−4 : −2), tz = ∅. Then, we get

L(λ) = λ


0 0 A4 0
0 A4 A3 0

A4 A3 A2 0
0 0 0 −A0

−


0 A4 0 0
A4 A3 0 0
0 0 −A1 −A0
0 0 −A0 0

 .

• Let w = (0 : 2), tw = ∅, z = (−4 : −3), tz = ∅. Then, we get

L(λ) = λ


0 A4 0 0

A4 A3 0 0
0 0 −A1 −A0
0 0 −A0 0

−


A4 0 0 0
0 −A2 −A1 −A0
0 −A1 −A0 0
0 −A0 0 0

 .

• Let w = (0 : 3), tw = ∅, z = (−4), tz = ∅. Then, we get

L(λ) = λ


A4 0 0 0
0 −A2 −A1 −A0
0 −A1 −A0 0
0 −A0 0 0

−

−A3 −A2 −A1 −A0
−A2 −A1 −A0 0
−A1 −A0 0 0
−A0 0 0 0

 .
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• Let w = (0), tw = ∅, z = (−2 : −1,−4 : −3), tz = (−3). Then, we get

L(λ) = λ


0 0 0 I
0 0 A4 A3
0 A4 A3 A2
I A3 A2 A1

−


0 0 I 0
0 A4 A3 0
I A3 A2 0
0 0 0 −A0

 .

• Let w = (0 : 1), tw = ∅, z = (−3 : −2,−4), tz = ∅. Then, we get

L(λ) = λ


0 0 I 0
0 A4 A3 0
I A3 A2 0
0 0 0 −A0

−


0 I 0 0
I A3 0 0
0 0 −A1 −A0
0 0 −A0 0

 .

• Let w = (1 : 2, 0), tw = ∅, z = (−4 : −3), tz = ∅. Then, we get

L(λ) = λ


0 A4 0 0

A4 A3 0 0
0 0 −A1 I
0 0 I 0

−


A4 0 0 0
0 −A2 −A1 I
0 −A1 −A0 0
0 I 0 0

 .

• Let w = (2 : 3, 0 : 1), tw = (1), z = (−4), tz = ∅. Then, we get

L(λ) = λ


A4 0 0 0
0 −A2 −A1 I
0 −A1 −A0 0
0 I 0 0

−

−A3 −A2 −A1 I
−A2 −A1 −A0 0
−A1 −A0 0 0

I 0 0 0

 .

• Let w = (0), tw = ∅, z = (−2 : −1,−4 : −3), tz = ∅. Then, we get

L(λ) = λ


0 0 A4 0
0 0 0 I

A4 0 A3 A2
0 I A2 A1

−


A4 0 0 0
0 0 I 0
0 I A2 0
0 0 0 −A0

 .

• Let w = (2 : 3, 0 : 1), tw = (1, 0), z = (−4), tz = ∅. Then, we get

L(λ) = λ


A4 0 0 0
0 −A2 I 0
0 I 0 0
0 0 0 A0

−

−A3 −A2 I 0
−A2 −A1 0 −A0

I 0 0 0
0 −A0 0 0

 .





Chapter 6

Conclusions

In this work we have studied the Fiedler pencils with repetition which are
symmetric whenever the matrix polynomial P(λ) is. We have characterized
all such pencils and have also given necessary and sufficient conditions for
them to be strong linearizations of P(λ). Additionally, when the matrix
polynomial P(λ) has degree k and the coefficients of the terms of degree 0
and k are nonsingular, our family is a nontrivial extension of the basis of the
k-dimensional vector space DL(P) studied in (12; 18). Examples show that
our family contains more than k linearly independent linearizations but it
is still an open question the dimension of the vector space that this family
generates for a general k. It is also an open question the characterization
of all the pencils in this vector space which are strong symmetric lineariza-
tions of the matrix polynomial P(λ) when P(λ) is symmetric. Notice that
for general P(λ) this vector space consists of block-symmetric pencils.
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