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ABSTRACT

The Hecke algebra H,, (k) and Temperley-Lieb algebra T'L,,(q) are very neatly related, for ex-
ample there is a surjective algebra homomorphism from the Hecke algebra to the basis of the
Temperley-Lieb algebra. Using this, we examine various special elements of the Hecke algebra
- including the Murphy operators and several idempotents - as elements of Temperley-Lieb
algebra under this homomorphism. Because the Temperley-Lieb algebra can be represented
by tangles of string in a three dimensional space, it is sometimes possible to create simple
and elegant representations that make algebraic properties visually obvious.

1. BACKGROUND

1.1. Basic definitions.

Definition 1.1. An algebra is a vector space V' over a field K with an operation - : VRV —
V', such that - is bilinear. That is, given vectors x, y and z, we have that (x+y)-z = xX-z2+y-2
(left distributivity), x - (y +2z) = x -y + x - z (right distributivity), and, given a,b € K,
(ax) - (by) = (ab)(x -y) (scalar compatibility).

Definition 1.2. An associative algebra is an algebra in which multiplication is associative,
and so, an associative algebra has the properties of both a ring and a vector space. In this
paper, we assume all of our associative algebras are unital, ie, they have a multiplicative
identity.

Definition 1.3. The group algebra C[S,] of the symmetric group is the algebra over the field
C where the basis vectors are permutations on n elements; ie, precisely the elements of S,,.
For instance, in Sy, various elements include 5(213), (e*")(12)(34) and (4 + 7i)(3142). The
vector multiplication operation is simply the group operation in S,, extended in the unique
bilinear way to CS,,. For example, given (ij), (kl), (st) € S,, and a,b € C we have that:

(ig) - (kD) + (st)] = (ig)(kl) + (25)(st)
(i7)(st) + (K)(st) = (i) + (KD)] - (st)
(a(ig)) - (b(kD)) = (ab)((ij) (k1))

From this point on, given x and y, we write xy for x - y.

Additionally, we can define C[S,,] via generators and relations.
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Proposition 1.4. C[S,,] is spanned by elements generated by o; = (i i+ 1), 1 <i<n—1,
with defining relations:

0;,0; = 050 Zf‘l—j’>1
0i0i+10; = 0410041
o =1

7

Proof. First, we know that in 5,,, the o; are in fact a generating set. So, any element of S,
can be written as a product of the o;. Now, we need to show that the relations given hold
for S,,. O
1.2. The Hecke Algebra.

Definition 1.5. The Iwahori-Hecke Algebra, or Hecke Algebra, denoted H,(s), is an algebra

with generators 01,09, ...,0,_1, subject to the following relations:
oio; = oo, ifli—j|>1
0i0i+10; = 0410041

o} = (s—sYoi+1

where s is a fized invertible element of the field.

For our purposes, we can use any field such that we can find an element s such that s—s=! # 0;
several common fields for this include Q, R, and C are common choices.

Observation 1.6. If we let s = 1, then H,(s) = C[S,]

Now, we can represent the o; visually in the following manner:

Multiplication of two diagrams is handled simply by stacking the two on top of each other;
for instance, in Hy(s),

e LA T3]

From these diagrams, we have that o; has an inverse, o; ' where the diagram for o; ' is

since, clearly,



It show be clear that this diagram, e, is the identity.

1.3. Skein Relations. While we have the set of relations defined for H,(s), it is useful to
be able to express these relations in diagram form. Two diagrams are equivalent if they
can be transformed into each other by a series of the second and third Reidemeister mowves,

which are depicted below:
AN a
S \/XK

These three moves can be expressed as 2) moving one stand completely over another or 3)
moving a stand over or under a crossing. Notice that, in H,(s), the second move is precisely
how we evaluate inverses. In order to properly use these moves in H,(s), we need to add an

additional relation:
XX oo
N J

o;— 0, =5—5" (2)

or, equivalently,

This relation is known as the skein relation.

Proposition 1.7. The above skein relation is equivalent to the quadratic relation, and Rei-
demeister moves 2 and 3 can be expressed by simple relations in H,(s).

Proof. First, we show the equivalence with the quadratic relation - which is a matter of
simple algebra:

1

o; — 0; s§—S
o2 —1 = (s—s Yo
o7 = (s—s Yo+ 1.

The proof of the second Reidemeister move is simply a matter of observing that H,(s) has
inverses, and we have the third Reidemeister move from the relation o;0,,10; = 0,110,041 -
the diagrams obtained by this combination of elements is precisely Reidemeister 3. 0
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1.4. The Temperley-Lieb Algebra.

Definition 1.8. The Temperley-Lieb Algebra over a ring, T'L, () (n > 1), is an associative

algebra with generators ey, es, ..., e,_1 and the following relations:
2
e; = Jde;
€i€it1€; = €
€;€; = €€ M—j|>1

where 0 is a fized invertible scalar in the ring.

Similarly to the Hecke algebra, there is a very natural way to express elements of this algebra
as diagrams.

i 141

= ITRI

Again, similarly to the multiplication of diagrams in H,(s), we express multiplication in
TL,(0) by stacking. For an example, in 7'L5(9):

=LA X

e

Sometimes, when elements are stacked, we create a closed loop in the diagrams. Whenever
this occurs, we remove the loop and replace it with §. For instance, in T'L3(§),

E )

which is precisely our quadratic operator. This loop-removal process also applies to larger

loops as well, such as:
A U

€9€4€364€9 = =4 (I .\/’ .\/.> = 0(egey)
i

(\Q

We can show this via the relations by noticing that es(eseses)es = es(eq)es = egesey =
56264

Notice that any identity element of a function is an idempotent.
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1.5. The Jucys-Murphy Elements.
Definition 1.9. The Jucys-Murphy Elements in C[S,] are defined as the following sum:
m(j) = _(ij) € C[S,]
i=1
forj=2...,n.
Proposition 1.10. Given m(i), m(j) € C[S,], m(i)m(j) = m(j)m(3).

Proof. First, notice that m(2)m(3) = (12) = [(13) + (23)] = (132) + (123) = m(3)m(2). Now,
assume j > k > i. Now, we show (ik)m(j) = m(j)(ik)

—~

(tk)m(j) = GR)[(1))+ (29) + -+ (@) + -+ (k) + - + (1 — 1))]
= (tk)(15) + (ik)(27) + - - - + (ik)(if) + ... (ik) (k) + ... (ik) (5 — 1J)
= (15)(ik) + (25)(ik) + - - - + (igk) + - - - + (ikj) + ... (j — 17)(ik)
= (L))(ik) + (2))(ik) + - - - + (i) (ik) + - - - + (kj)(ik) + ... (j — 1)) (ik)
= m(j)(ik)

Now, (assuming, without loss of generality, that j > 1)

mim() = 3 (kiym(j)
= 3 m) k)
k=1
= m(j)m(i)
0
Proposition 1.11. >, m(i) = M, € Z(C[S,])
Proof. Proved in [1]. O

2. CONSTRUCTION OF THE MURPHY ELEMENTS IN H, (k)

First, note that there is a clear surjective mapping ¢ : H,(s) = C[S,], ¥(0;) = (i i + 1); in
other words, CI[S,,] is a specialization of H,(1). For an element of r € H,,(k) to be an analog
of a Jucys-Murphy element, 1 (r) must be m(j) for some j. It such be immediately clear
that ¥ (o1) = (12) = m(2). Less clear are the construction of other Jucys-Murphy elements,
but, if first we notice that

m() =0 = (=196 ~2) -G+ @) G- 26 - 1) @

The construction in H,(s) becomes readily apparent.
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Definition 2.1. In H,(s), m(j) can be represented as
-1

M(]) = (Uj_laj_g c e 044100541 - . - O'j_gO'j_l) (4)
1

.

2

Additionally, if we let

T ?
T(]): J l :O'j_l...O'QO'%O'Q...O'j_l (5)
AN
\;

Proposition 2.2.

L~ T -1
M(j) = 6
G =07 )
Proof. We show that (6) holds. Notice that:
T(]) = 0j-1... 020’%0‘2 - 051

= 0j-1-- .0'2((8 — 571)0'1 + 1)0’2 <05

= (S — S_l)O'j_l -..020102...051 + Oj—1-- .O'g 051
= (8 — 871> (O’j,1 «..020109...051 + 0j-1...02.. .O'];l)

2
+ 0j.1...03...051

j—1
= (S — 3_1) <Z (o'j_lo'j_g - 0i41030541 - - - Jj_QO'j_l)>

=1

Additionally, we now consider M = >°7 | M(j).

Definition 2.3. We can represent M as a linear combination of T™ and the identity,

and TO = e.

Proof. First, we decompose one of the crossings of 7™ Notice that:

It 1 (1t 7
i =

~— ~|

Or, alternatively,

T =70 4 (s — s7)T(n)
since the loop in the last diagram can be resolved by Reidemeister 1. Continuing this pattern,
we get that

T = (s — s> T(i)+ T
=1
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and since we have that T'(j) = (s — s~ 1) M (i) + 1, we ge that

n

T = (s—s71) Z ((s—sHM@E) +1)+1

=1

= (s—s1)? Z M(i) 4+ n

3. IMPOSING THE SKEIN RELATIONS ON T'L, ()

In order to be able to better view the Murphy elements in 7L, (), we need to define the
notion of crossings in the algebra. So, we follow Kauffman, and define

y:a II +at % =a e, +a (7)
S N

Or, for the opposite facing crossing,

Y:a V +a! II =ae; +a! (8)
J PN

where a? + a2 = —§.

We now need to show that these relations allow Reidemeister moves 2 and 3 to hold. Given
these relations, notice that:

O G A B!

= d*(e;) +aa ' +ala .B/. +a%e;

'
= (@®+a?+0e;+1=1
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Notice that the other side of Reidemeister 2,

D VA

! .\C)/. + ae;

'

= a Yale;+a)tala

= (@®+a?+80e+1=1

Now, we show that Reidemeister 3 holds as well. Notice that:

3
> = (aex +a ) (a e +a)(a ey + a).
J

by converting from the diagram into the algebraic expression. Now,

(aey +a ') (a ey +a)(a ey +a)
(ege1 +a2%e; + a’eq + 1) (a ey + a)
= a ey Fateiey +aek +a ey +aese; +atey +ates +a
= (2a7'+ad +a®)ey +ater +aPeien + aeser +a
= (2a ' +a(—a*—a?) +a’)ey +a e +aPerey +aese; +a

= a’leQ + a’lel + (f?’eleg + aeseq + a.

Similarly, the other diagram can be expressed as:

\/.
O =@ a+ e+ o) +a).

W

which can be written as:

ailel + aeqe; + CL736162 + aileg +a

Notice that these two expressions are identical. Additionally, at this point, for the sake of

brevity, we will write p; for a=te; + a, and p;* for ae; +a™'.

4. THE HOMOMORPHISM ¢ : H,(s) — T'L,(0)

Proposition 4.1. There exists an surjective algebra homomorphism ¢ : H,(s) — TL,(J)
such that ¢(o;) = e; —s™', and § = s + s~1. Additionally, this homomorphism has a kernel
generated by K = s73 4+ 57201 + s 209 + s L0109 + s Loa01 + 09010.
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Proof. First, we show that this is, in fact, a homomorphism:

Given ro;, then ¢(ro;) = re; + rs™' = r(e; + s7') = r¢(o;). Now, take ¢(o; + 0;) =
ei+s 4e;+s7! = ¢(0;)+¢(0;) Finally, since that ¢(oi0;) = (e;+s~ )(e]—l—s Y = ¢(0i)p(o;
we have that this is a homomorphism

Y

Now, we show that K € ker(¢):
o(K) = gzﬁ( 45720, + 57200 + 5 o109 + 8 L0901 + 090109)
= s%+s5%er—s ) +sea—s ) st er—s)(ea—s)+s5Hea—s5)(eg — s
+(62 —s)(er =5 )(ea — 571
= s 45 % -5 45 -5+ (ster—s5 ) ea—s )+ (srey— s (e — s
+(ea =57 (er =5 (ea — 571
= 3_261 + 8_262 — s34 8_16162 — 8_261 - 8_262 +s3+ 8_16261 — 8_261 — 8_262 +s73
+(egey — s ey — s teg +57%) (eg — s7Y)

= g3— 8_261 — 8_262 + 8_16162 + 8_16261 + ege1e9 — 8_16162 — S_leg + 8_262

—8_16261 + 8_261 + 8_262 — g3

ese1ey — 8 es + 5 %ey
= ey — 5 (0)eg + 5 %en

= eg— s’l(s + s’l)eg + 5 %€, = 0.

That this generates the kernel is shown in [2].

Now, we show that this is, in fact, surjective. Notice that ¢(o;+s7!) = (¢;—s 1) +s7 ! =e;.
Since we can represent every element in 7'L,(d) as a linear combination of products of
generators, we can, for any given element x in T'L, (), construct an element in H,(s) such
that it maps to x, and this is precisely the definition of surjectivity. 0
Now, notice that since s + s7! = § = —a® — a2, we can let s7! = —a? (Alternatively, we
could have set s=! = a2, but our chosen equivalence provides more convenience). This
implies that

plo;)=e;—s ' =e;+a*=ala'e+a)=a y . 9)
Y

The diagram in the last equation is, unshockingly, identical to a multiple of the diagram
representation of o; in H,(s).

5. THE Jucys-MURPHY ELEMENTS IN T'L,(9)

We know that the Jucys-Murphy Elements are of the form expressed in (4). Now, the obvious
way to view these elements is under the homomorphism ¢ that we just defined. And so, we
have that

¢(M(j))=¢<znai> Zza’H ale; +a)

A

and that the tangle T'(j) can be expressed as:
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AT (7)) = a2pj1...papips... pj-1.
So, using these, we can reconstruct the property from (6)

Lemma 5.1.

W o(T(5) — 1
p(M(j)) = Ta2_ag
Proof. This follows from the fact that ¢ is a homomorphism. 0J

A similar result holds for ¢(M) = T —n)

(a—27a2)2‘
6. DECOMPOSITION OF MULTIPLE CROSSINGS IN T'L,,(0)

Now, we consider tangles in T'L,,(J) of the following form:

where we have n strands passing over m strands. We begin by examining the case of a single
strand crossing two strands; in diagrams:

Ao alT A A A

Unshockingly, this can be written as (a ey + a)(a™te; + a) = a 2ese; + €1 + €3 + a’.

Now, we consider the diagram of a single strand crossing over 3 strands:

W

L



Similarly, it should be clear that this is (a 'ez 4+ a)(a 'es + a)(a™te; + a) = a 3ezeqe; +

a lteses + a"tese; + aleser + aes + aey + aeq + a’.

From these examples, the general case should be readily apparent.

Proposition 6.1. The diagram

a single strand crossing over m strands in TL,,(8), m > n, can be expressed as (a"'e, +

a)(a™te,_1 +a)...(a ey + a), with a corresponding diagram decomposition.

For the sake of brevity, we let & = (a~'e;+a); we can write the above diagram as ,&,_1 ... &;.
Additionally, we denote the opposite-facing crossing as &' = (ae; +a™).

Notice that:

&Y = (atej+a)(ae; +at)
= e’ +a’e;+a e +1
= (—a*—a e+ (*+a e +1=1

From this, we simply redefine the homomorphism ¢ : H,,(s) — T L,(d) as ¢(p;) = &;

7. QUANTUM INTEGERS

Definition 7.1. The Quantum Integers are defined as a countably infinite set of polynomaials
over a fized invertible constant q. Let [n] denote the nth quantum integers; then

n] = q —q an12@

q—q!

1

For example, [3] = ¢*+14¢72, [1] = = — =1land[0] = qq:qq = 0. It should also be clear
from the definition that [—n| = —[n]. However, it does not follow that [n] + [m] = [n + m],
nor does it follow that [n][m| = [nm]; For example, [2][3] = (¢' + ¢ )(¢* + 1+ ¢7?) =

¢+ 2q" +2¢7 1 + ¢ # [6]. However, there is a well-defined multiplication operation:

—0

Proposition 7.2.

[n][m] = Z[m +(n+1) — 2]

Proof. This follows immediately from the definition. 0J

From this, we get that [2][3] = [4] + [2].
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8. JONES-WENZL IDEMPOTENTS

Definition 8.1. In T'L,(0), the Jones-Wenzel idempotent, denoted ™ is characterised by
the following properties:

o #0 (10)
F g = ) (11)
eif™W=fMe, = 0 Vie{l,...,n—1}. (12)

For instance, f® =1+ %(61 +eo) + ﬁ(eleg + egeq), where § = —[2]. Notice that:

5 2]
elf() = 61(1‘1‘@(61‘1‘62)‘1‘

2
= e+ u(561 + erea) +

3]

)
(% + 1) er + 2 + ﬂ) (e1e2)

- (F+1)e=o

1

3]

(6162 + 6261))

and that

fBey = (1+ E(61 +e9) + i(eleg + eq61))es

3] [3]
= e E e + ege ie eqe
= 1+[3](51+21)+[3](1+521)

= 0 by similar computations.

It follows identically that f®e, = e f® = 0. Now, notice that since § = —a? — a2, and
2] = g + ¢! for some ¢, we can let [2] = a® + a2 = ¢ = a®. From this, we get that:

f(S) = 1+ %(61 +es) + %(6162 + ege1)

([BDF? = [Bl+[2)(er +es) +erea +eser
= (P +1+¢72) +(g+q (e +ex) +erer +eren
= (a*+1+a )+ (a®+a?)(er +e2) + erea + eaey

Now, by section 6, we know that: (a7'es + a)(a"te; + a) = a 2eze; + €1 + €9 + a?; and, in
diagrams:

.\:\. = a 2ege; +eq + ey + a?

’/_a2€ —2
/ = 162 + €1+ €3+ a ,
J

12
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So, it follows that:

. RN,
<a2>V+<a 2>\+1 — (3
\o\o /o/
)

Clearly, we can view this in H,(

»(s) by taking the inverse of ¢ (¢ has a well-defined inverse
from the image of ¢ into H,(s)).
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