
University of California,
Santa Barbara

Senior Thesis

Bregman Algorithms

Author:

Jacqueline Bush

Supervisor:

Dr. Carlos

Garćıa-Cervera

June 9, 2011

Acknowledgments

I could not have done this without the help and support of my advisor

Dr. Carlos Garcia-Cervera.

i

Abstract

In this paper we investigate methods for solving the Basis Pursuit problem and

the Total Variation denoising problem. The methods studied here are based on

the Bregman iterative regularization, and efficient algorithm for convex, con-

straint optimization problems. We study two different versions of the original

Bregman iterative algorithm: the Linearized Bregman algorithm, and the Split

Bregman algorithm. We find that the original Bregman Algorithm has good

convergence properties, but while these properties hold for the linearized ver-

sion, they do not always hold for the Split Bregman Algorithm.

ii

iii

Contents

1 Introduction 1

2 Background 4

3 Bregman Iterative Algorithm 8

3.1 Convergence properties of the Bregman Iterative Algorithm . . . 10

4 Linearized Bregman Iterative Algorithm 14

4.1 Linearized Bregman Iterative Algorithm with Kicking 17

5 Split Bregman Algorithm 20

5.1 Anisotropic TV Denoising . 23

5.2 Isotropic TV Denoising . 26

6 Numerical Results 29

6.1 Basis Pursuit Problem . 29

6.2 Image Denoising Problem . 32

7 Further Study 37

8 Matlab Code 38

8.1 Linearized Bregman . 42

8.2 Linear Bregman with kicking . 42

8.3 Anisotropic TV Denoising . 44

8.4 Isotropic TV Denoising . 47

iv

List of Figures

1 Linearized Bregman Algorithm 18

2 Linearized Bregman Algorithm 20

3 Linearized Bregman Algorithm, m=10, n=30, ||u||0 = 0.1n 31

4 Linearized Bregman Algorithm, m=50, n=200, ||u||0 = 0.05n . . 31

5 Split Bregman Results using Fluid Jet Image 34

6 Split Bregman Error Results using the Fluid Jet Image 34

7 Split Bregman Results using Clown Image 35

8 Split Bregman Error Results using the Clown Image 35

9 Split Bregman Results using Durer Detail Image 36

10 Split Bregman Error Results using the Durer Detail Image 36

v

1 Introduction

In this paper we study Bregman Iterative algorithms, and their ability to solve

constrained optimization problems such as the Basis Pursuit problem and the

Total Variation (TV) denoising problem.

In the Basis Pursuit problem we are interested in finding a solution u ∈ Rn

to the linear system of equations Au = f , where A ∈ Rm×n with m << n, and

f ∈ Rm. We assume that the rows of A are linearly independent. As a result,

the system is underdetermined, and therefore it has infinitely many solutions.

In the Basis Pursuit problem we look for a solution to the linear system of

equations with minimal l1 norm, i.e., we want to solve the constrained problem

min
subject to Au=f ,

‖u‖1, (1.1)

where

||u||1 =

n∑
i=1

|ui|. (1.2)

Imposing the constraint in (1.1) leads to a number of difficulties, so instead, we

relax the constraint, and solve the unconstrained basis pursuit problem

min
u∈Rn

µ||u||1 +
1

2
||Au− f ||22, (1.3)

where µ ∈ R is a positive constant. One can prove that when µ→ 0, the solution

to the unconstrained problem converges to a solution of the constrained problem.

The basis pursuit problem appears in applications of compressed sensing,

where a signal assumed to be sparse is reconstructed from incomplete data on it.

Using this principle one can encode a sparse signal ū using a linear transforma-

tion Aū = f ∈ Rm, and then recover ū from f using (1.3). Recent applications

of the basis pursuit problem include compressive imaging, and computer vision

1

tasks to name a few [10].

In our second problem, the TV denoising problem, we want to recover an

image that has been affected by noise. This leads to a problem of the form

min
u∈BV (Ω)

||u||BV +H(u), (1.4)

where H(u) is a convex function. The functional in (1.4) is minimized among

functions of bounded variation (BV): Given Ω ⊂ Rn and u : Ω → R, we define

its bounded variation as [4]

||u||BV = sup

{∫
Ω

u div(g) dx | g = (g1, g2, · · · , gn) ∈ C1
0 (Ω,Rn)

and |g(x)| ≤ 1 for x ∈ Ω

}
,

where

div(g) =

n∑
i=1

∂gi
∂xi

. (1.5)

The space of functions of bounded variation is defined as BV (Ω) = {u : Ω →

R|‖u‖BV < +∞}, and it is a Banach space. Notice that if u ∈ C1(Ω), then

integration by parts gives,

‖u‖BV =

∫
Ω

|∇u| dx = ‖∇u‖1. (1.6)

Therefore, the Sobolev space W 1,1(Ω) of functions in L1(Ω) whose gradient is in

L1(Ω) is contained in BV (Ω): W 1,1(Ω) ⊂ BV (Ω). However, BV (Ω) 6= W 1,1(Ω):

Consider for instance a set E ⊆ Ω with a smooth boundary, and u = χE , its

characteristic function. Then,

‖χE‖BV = H1(∂E),

2

the surface area of ∂E. However, since χE is discontinuous at the interface ∂E,

∇χE /∈ L1(Ω). This example, which might seem artificial at first, is the typical

situation when one tries to recover an image, since images are best represented

by a collection of disjoint sets, i.e., separated by sharp interfaces. Thus BV (Ω),

and not the Sobolev space W 1,p(Ω) of functions in Lp(Ω) whose gradient is also

in Lp(Ω), seems to be the natural space in which to consider the TV denoising

problem. However, evaluating the BV -norm of a function can be costly, and it

is sometimes replaced by the L1-norm of the gradient. Since the focus in this

thesis is the application of Bregman-type algorithms to this problem, this is the

approach that we will take.

Thus, in the TV denoising problem considered here, we are given as data a

function f ∈ L2(Ω), which is the representation of the noisy image. We try to

recover the original image by minimizing

min
u∈BV (Ω)

||∇u||1 +
µ

2
||u− f ||22, (1.7)

where µ > 0 is a constant. Reducing the noise from obtained images can be ap-

plied to many fields. For example, if we can reduce the noise on images coming

in from a satellite one can save the millions of dollars that it would require to

send an astronaut to repair it. It can also be applied to reduce noise from an

medical test such as an MRI or CT scan.

This thesis is organized as follows: In section 2 we introduce some of the defini-

tions and concepts to be used throughout the remainder of the thesis. In section

3 the Bregman iterative algorithm is introduced and its convergence properties

are studied. A linearized version of the algorithm is derived in section 4. One

drawback of the Linearized Bregman algorithm is that it can reach periods of

stagnation, where progress toward the solution is slow. A method called Kicking

3

that reduces the number of iterations that the algorithm spends in these peri-

ods of stagnation is also described in section 4. In section 5 the Split Bregman

algorithm is introduced and studied. It is shown in section 6 that the Linearized

Bregman algorithm solves the basis pursuit problem quickly and accurately. It

is also shown that the Split Bregman algorithm is not monotonic, unlike the

iterative Bregman algorithm introduced in section 3.

2 Background

Several algorithms have been introduced to solve (1.3), such as the l1ls algo-

rithm developed by S-J. Kim, K. Koh, and S. Boyd [7]. The authors applied an

interior-point method to a log-barrier formulation of (1.3). Each interior point

iteration involved solving a system of linear equations. These iterations were

accelerated using a preconditioned conjugate gradient method, for which S-J.

Kim, K. Koh, and S. Boyd developed an efficient preconditioner [7]. While this

algorithm does solve (1.3), it can be expensive in time and computer memory.

For medium sized problems it can require up to a hundred iterations, but for very

large problems the algorithm could take several hundred iterations to compute

a solution with relative tolerance 0.01 [7]. The Bregman Iterative Algorithms

described in the next sections are proposed as a faster, less computationally

expensive alternative.

In what follows, we consider a normed space X, with norm ‖ · ‖.

Definition A function J : X → R is said to be convex if ∀ x, y ∈ X and any

t ∈ [0, 1],

J(tx+ (1− t)y) ≤ tJ(x) + (1− t)J(y). (2.1)

4

Definition We say that J : X → R is lower semicontinuous at u ∈ X if

lim inf
x→u

J(x) ≥ J(u). (2.2)

or, equivalently, if for all λ ∈ R, the set {x : J(x) ≤ λ} is closed.

Both the l1-norm and the BV-norm are lower semicontinuous functions. To see

this, consider the set

S = {u ∈ Rn : ‖u‖1 ≤ λ}. (2.3)

If λ ≤ 0 then S is the empty set, which is closed by definition. Now suppose

that λ > 0, and assume {um} is a sequence in S that converges to u ∈ Rn. It

follows that

‖u‖1 ≤ lim sup
m→∞

(‖um‖1 + ‖u− um‖1) ≤ λ. (2.4)

Hence u ∈ S, and S is a closed set in Rn.

The fact that the BV-norm is lower semicontinuous follows from the following

results, whose proof can be found in [4], and that will be used in the following

section:

Proposition 2.1. (Semicontinuity): Let Ω ∈ Rn be an open set and {fj} a

sequence of functions in BV (Ω) which converge in L1
loc(Ω) to a function f .

Then

‖f‖BV ≤ lim inf
j→∞

‖fj‖BV . (2.5)

Proposition 2.2. (Compactness): Let Ω be a bounded open set in Rn. Then

the sets of functions uniformly bounded in the BV -norm are relatively compact

in L1(Ω).

Definition The function J : X → R is coercive if

lim J(u) = +∞ for ‖u‖ → ∞.

5

The importance of this definition can be seen from the following

Proposition 2.3. Let V be a reflexive Banach space, and X a non-empty

closed, convex subset of V . Assume that J : X → R is convex, lower semi-

continuous, and coercive. Then, the problem

inf
u∈X

J(u)

has at least one solution.

The poof can be found in [3].

Definition The dual space of X, denoted by X∗, is defined to be the set of

functions l : X → R such that l is linear and continuous.

Given an element l ∈ X∗, we denote l(u) = 〈l;u〉 for all u ∈ X.

Definition Suppose J : X → R is a convex function and u ∈ X. An element

p ∈ X∗ is called a subgradient of J at u if ∀v ∈ X

J(v)− J(u)− 〈p, v − u〉 ≥ 0. (2.6)

The set of all subgradients of J at u is called the subdifferential of J at u, and

it is denoted by ∂J(u).

Notice that the subdifferential extends the notion of gradient of a function. For

example, consider f(x) = ‖x‖2 in Rn, the Euclidean norm. This function is not

differentiable at x = 0, however it has a subdifferential at x = 0, and in fact

∂f(0) is the closed ball (in the Euclidean norm) around 0 with radius 1, B̄1(0).

Definition Consider a function J : X → R. We call the limit as λ→ 0+, if it

exists, of

J(u+ λv)− J(u)

λ

6

the directional derivative of J at u in the direction v, and denote it by J ′(u; v).

If there exists p ∈ X∗ such that

J ′(u, v) = 〈p, v〉 ∀v ∈ X,

we say that J is Gateaux-differentiable at u, and call p the Gateaux-differential

of J at u, and denote it by J ′(u).

One can prove that if J : X → R is Gateaux-differentiable at u ∈ X, then

∂J(u) = {J ′(u)}. And conversely, if J is continuous at u ∈ X and has only

one subgradient, then J is Gateaux-differentiable at u and ∂J(u) = {J ′(u)}.

In addition notice that J : X → R has a minimum at u ∈ X if and only if

0 ∈ ∂J(u), for in that case

J(v)− J(u) ≥ 〈0, v − u〉 = 0.

Finally, all the algorithms discussed in this paper rely on the Bregman distance,

introduced by L. M. Bregman in 1966 [1].

Definition Suppose J : X → R is a convex function, u, v ∈ X and p ∈ ∂J(v).

Then the Bregman Distance between points u and v is defined by

Dp
j (u, v) = J(u)− J(v)− 〈p, u− v〉 . (2.7)

The Bregman distance has several nice properties that make it an efficient tool

to solve l1 regularization problems, such as,

Property 2.4. For all u, v ∈ X, and p ∈ ∂J(v), Dp
J(u, v) ≥ 0 .

Proof. Since p ∈ ∂J(v), this property follows directly from the definition of

subdifferentials.

7

Property 2.5. Dp
J(v, v) = 0

Proof. Observe, Dp
J(v, v) = J(v)− J(v)− < p, 0 >= 0.

Note that in general the Bregman Distance is not symmetric. For instance

if p ∈ ∂J(v)∩ ∈ ∂J(u) then

Dp
J(u, v) = J(u)− J(v)− < p, u− v >

= J(u)− J(v)+ < p, v − u >

= −(J(v)− J(u)− < p, v − u >)

= −Dp
J(v, u)

3 Bregman Iterative Algorithm

In [8], S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin proposed the

Bregman Iterative Algorithm as an efficient algorithm for solving problems of

the form

min
u
{J(u) +H(u, f)} , (3.1)

where for a closed and convex set X both J : X → R and H : X → R are convex

nonnegative functions with respect to u ∈ X, for a fixed f . In addition H(u, f)

is assumed to be differentiable. Recall f is the vector or matrix, depending on

the problem, that u was encoded into. Osher, Burger, Goldfarb, Xu, and Yin

defined the Bregman iterative algorithm as follows

Bregman Iterative Algorithm:

Initialize: k=0, u0 = 0, p0 = 0

while “uk not converge” do

uk+1 = argminu D
pk

J (u, uk) +H(u)

8

pk+1 = pk −∇H(uk+1) ∈ ∂J(uk+1)

k = k + 1

end while

It is easy to see that the first iteration yields

u1 = min
u∈X

(J(u) +H(u)). (3.2)

Hence the first iteration of this algorithm solves (3.1). However to solve our ini-

tial problem we need the residual term to be minimal. This is why the Bregman

Iterative Algorithm continues until the residual term converges.

While working with basis pursuit problems we let J(u) = ||u||1 and H(u) =

1
2 ||Au− f ||

2
2. When studying image denoising we let J(u) = ||u||BV or J(u) =

‖∇u‖1, and H(u) = ||u− f ||22.

Proposition 3.1. Let X be a reflexive Banach space. The iterative proce-

dure in the above algorithm is well defined if H : X → R and J : X → R

are convex, J is lower semicontinuous and coercive, H is bounded below and

Gateaux-differentiable.

Proof. Since H is bounded below, we can assume that H is nonnegative without

loss of generality. Otherwise, define H̃ = H − inf H. Since H and H̃ differ by

a constant, the algorithm applied to J + H̃ generates the same sequence {uk}.

The above algorithm is well defined if for each k,

Qk(u) = Dpk−1

J (u, uk−1) +H(u) (3.3)

has a minimizer, uk, and pk = pk−1 − ∇H(uk) ∈ ∂J(uk). Recall that the

9

Bregman Distance and H(u) are nonnegative. Hence,

Qk(u) = J(u)− J(uk−1)−
〈
pk−1, u− uk−1

〉
+H(u)

≥ J(u)− J(uk−1)−
〈
pk−1, u− uk−1

〉
= Dpk−1

J (u, uk−1) ≥ 0

It follows that Qk(u) has a lower bound for all k. From the coercivity of J and

the continuity of H, it follows by Prop. 2.3 that Qk(u) has a minimizer, uk, for

each k. Since Qk(u) has a minimum at uk, it follows that 0 ∈ ∂Qk(uk). Hence,

0 ∈ ∂J(uk)− pk−1 +∇H(uk),

⇒ pk−1 −∇H(uk) ∈ ∂J(uk),

⇒ pk ∈ ∂J(uk) ∀k ≥ 1.

Note that if J(u) = ‖u‖BV , then minimizing sequences are precompact,

by Proposition 2.2, and J is lower semicontinuous by Proposition 2.1. The

existence of minimizers follows then from the Direct Method in the Calculus of

Variations [2].

3.1 Convergence properties of the Bregman Iterative Al-

gorithm

The Bregman Iterative Algorithm has been applied to many problems including

image denoising and basis pursuit because it has some very nice convergence

properties. These properties include monotonic decrease in the residual term,

convergence to the original image or signal that we are trying to recover in the

residual term with exact data, and convergence in terms of Bregman distance

10

to the original image or signal with noisy data. We assume that X, J , and H

satisfy the same assumptions as in Proposition 3.1.

In the first result, we show that the sequence generated by the algorithm

monotonically decreases H:

Proposition 3.2. Monotonic decrease in H:

H(uk+1) ≤ H(uk+1) +Dpk

J (uk+1, uk) ≤ H(uk). (3.4)

Proof. Recall that the Bregman distance is nonnegative and that uk+1 mini-

mizes Dpk

J (u, uk) +H(u). Hence

H(uk+1) ≤ H(uk+1) +Dpk

J (uk+1, uk) ≤ H(uk) +Dpk

J (uk, uk) = H(uk).

Next we show that the sequence of residual terms {H(uk)} converges to the

minimum value of H:

Proposition 3.3. If ũ minimizes H : X → R and J(ũ) <∞, then

H(uk) ≤ H(ũ) + J(ũ)/k. (3.5)

11

Proof. Observe that

Dpk(u, uk) + Dpk−1

(uk, uk−1)−Dpk−1

(u, uk−1) =

= J(u)− J(uk)+ < pk, uk − u > +J(uk)− J(uk−1)

+ < pk−1, uk−1 − uk > −J(u) + J(uk−1)− < pk−1, uk−1 − u >

= < pk, uk − u > + < pk−1, uk−1 − uk > − < pk−1, uk−1 − u >

= < pk, uk − u > − < pk−1, uk − u >

= < pk − pk−1, uk − u > .

By construction,

pk − pk−1 = −∇H(uk). (3.6)

Since H is convex it follows that

< pk−1 − pk, uk − u >=< ∇H(uk), uk − u) >≤ H(u)−H(uk). (3.7)

Then we get the following equation:

Dpj (u, uj) +Dpj−1

(uj , uj−1)−Dpj−1

(u, uj−1) ≤ H(u)−H(uj) ∀j. (3.8)

Now if we sum in j in equation (3.8) we get,

k∑
j=1

Dpj (u, uj) +Dpj−1

(uj , uj−1)−Dpj−1

(u, uj−1) ≤
k∑
j=1

H(u)−H(uj)

⇒ Dpk(ũ, uk) +

k∑
j=1

[
Dpj−1

(uj , uj−1)−H(ũ) +H(uj)
]
≤ D0(ũ, u0) = J(ũ).

From proposition 3.2 and since the Bregman distance is never negative we can

12

rewrite the above equation as follows,

Dpk(ũ, uk) + k[H(uk)−H(ũ)] ≤ J(ũ). (3.9)

Hence

H(uk) ≤ H(ũ) +
J(ũ)

k
. (3.10)

Next we show that as long as the residual term H(uk; f) > δ2 then the

Bregman distance between the original signal or image and the current iteration

is decreasing.

Proposition 3.4. For an open set X let H : X → R suppose H(ũ; f) ≤ δ2 and

H(ũ; g) = 0 (f , g, ũ, δ, represent noisy data, noiseless data, perfect recovery,

and noise level, respectively). Then Dpk+1

J (ũ, uk+1) < Dpk

J (ũ, uk) as long as

H(uk+1) > δ2.

Proof. Suppose H(ũ) < δ2 and insert it into equation (3.8), then

Dpj (ũ, uj) +Dpj−1

(uj , uj−1)−Dpj−1

(ũ, uj−1) ≤ δ2 −H(uj)

⇒ Dpj (ũ, uj)−Dpj−1

(ũ, uj−1) ≤ δ2 −H(uj).

It follows that if H(uj) > δ2 then

Dpj (ũ, uj) ≤ Dpj−1

(ũ, uj−1).

13

4 Linearized Bregman Iterative Algorithm

The Bregman algorithm is a good tool to solve the basis pursuit problem ex-

plained in the introduction. However, at each step the algorithm requires the

minimization of

Dp(u, uk) +H(u), (4.1)

which can be computationally expensive. A linearized version of the Bregman

Iterative Algorithm was introduced by Yin, Osher, Goldfarb and Darbon in [10].

The main advantage of the linearized algorithm is that the minimization of (4.1)

is replaced by a minimization step that can be solved exactly, which allows for

efficient computation. We begin by linearizing H(u): Given uk we approximate

H(u) by,

H(u) = H(uk)+ < ∇H(uk), u− uk > . (4.2)

Since this approximation is only accurate for u close to uk, Yin, Osher, Goldfarb,

and Darbon added the penalty term 1
2δ ||u−u

k||22. The original problem is then

replaced by

uk+1 = arg min
u
Dpk

J (u, uk)+H(uk)+ < ∇H(uk), u−uk > +
1

2δ
||u−uk||22. (4.3)

Notice that the penalty term also makes the objective function bounded below,

and

||(u− uk) + δ∇H(uk)||2 = ||u− uk||22 + 2δ < ∇H(uk), u− uk > +δ2||H(uk)||22.

In addition, observe that ||H(uk)||22 and H(uk) are constants with respect to u.

It follows that the iteration (4.3) is equivalent to the iteration

uk+1 = arg min
u
Dpk

J (u, uk) +
1

2δ
||u− (uk − δ∇H(uk))||22. (4.4)

14

We apply this method to the Basis Pursuit problem (1.3), and let H(u) =

1
2 ||Au− f ||

2
2. Plugging this H into (4.4) we get

uk+1 = arg min
u
Dpk

J (u, uk) +
1

2δ
||u− (uk − δAT (Auk − f))||22. (4.5)

Now we derive a special case of (4.5). The case when J(u) = µ||u||1 and µ > 0.

In section 3 we defined pk+1 ∈ ∂J(uk+1) by

pk+1 = pk −∇H(uk) (4.6)

= pk − 1

δ
(uk+1 − (uk − δAT (Auk − f))). (4.7)

Hence,

pk+1 = pk−AT (Auk−f)− (uk+1 − uk)

δ
= · · · =

k∑
j=0

AT (f−Auj)− u
k+1

δ
. (4.8)

Let

vk =

k∑
j=0

AT (f −Auj). (4.9)

Then,

δvk − δpk+1 = uk+1, (4.10)

⇒ pk = vk−1 − uk

δ
. (4.11)

15

Then we get

uk+1 = min
u
µ||u||1 − µ||uk||1− < u− uk, pk > +

1

2δ
||u− (uk − δAT (Auk − f))||22

= min
u
µ

n∑
i=1

|ui| − µ||uk||1− < u− uk, vk−1 − uk

δ
>

+
1

2δ
||u− (uk − δAT (Auk − f))||22

= min
u
µ

n∑
i=1

|ui|− < u, vk−1 − uk

δ
> +

1

2δ
||u− (uk − δAT (Auk − f))||22 + C

Where C denotes constant terms with respect to u ∈ X. Notice that u ∈ X is

componentwise separable. Hence we can minimize each component of u ∈ X

separably. Doing this we get,

0 =

µ− vk−1

i +
uk
i

δ + ui

δ −
uk
i

δ − (AT (f −Auk))i ui > 0

0 ui = 0

µ+ vk−1
i − uk

i

δ −
ui

δ +
uk
i

δ + (AT (f −Auk))i ui < 0

0 =

µ− vki + ui

δ ui > 0

0 ui = 0

vki + µ− ui

δ ui < 0

⇒ uk+1
i =

δ(vki − µ) vki ∈ (µ,∞)

0 vki ∈ [−µ, µ]

δ(vki + µ) vki ∈ (−∞,−µ)

For convenience of notation we define the shrinkage function as follows: For

a ≥ 0,

shrink(y, a) =

y − a, y ∈ (a,∞)

0, y ∈ [−a, a]

y + a, y ∈ (−∞,−a)

16

It follows that

uk+1
i = δ shrink(vki , µ). (4.12)

The linearized algorithm for this special case can then be written as

Linearized Bregman Algorithm:

Initialize: u = 0, v=0

while “||f −Au|| does not converge” do

vk+1 = vk +AT (f −Auk)

uk+1 = δ shrink(vk+1
i , µ)

end while

4.1 Linearized Bregman Iterative Algorithm with Kicking

When running the Linearized Bregman iterative algorithm sometimes there ex-

ist periods of stagnation, where the residual stays almost constant for a large

number of iterations. This is illustrated in figure 1, where we solve the Basis

Pursuit problem (1.3) using the Linearized Bregman algorithm. We chose a

random matrix A of size 50× 200, and the number of nonzero elements in the

original signal was 20.

It took Matlab 0.438609 seconds to run the Linearized Bregman iterative algo-

rithm and reduce the initial residual to 0.000932. While the Linearized Bregman

algorithm is already fast, we can make it faster by removing the stagnation pe-

riods seen in figure 1. To get rid of unnecessary iterations we estimate the

number of steps required to leave the stagnation period. Observe that during a

stagnation period of, say, m steps,

uk+j = uk+1,

vk+j = vk + jAT (f −Auk+1) j = 1, · · · ,m.

17

Figure 1: Linearized Bregman Algorithm

Now uk+1 = δshrink(vk, µ) and during a period of stagnation uk moves only

slightly. It follows that vki will remain fairly constant if uki 6= 0. In other words

vki will only keep changing if uki = 0. Let I0 be all the indices where uki = 0. It

follows that
uk+j
i ≡ uk+1

i ∀i

vk+j
i = vki + j(AT (f −Auk+1))i i ∈ I0

vk+j
i ≡ vk+1

i i /∈ I0

The stagnation ends when for some i ∈ I0, vki leaves the interval [−µ, µ]. We can

estimate the number of steps required for some vki to leave the interval [−µ, µ]

by

si =

⌈
µsign · ((AT (f −Auk+1))i)− vk+1

i

(AT (f −Auk+1))i

⌉
∀i ∈ I0, (4.13)

and

s = min
i∈I0
{si} (4.14)

18

Using s we can predict the end of the stagnation period. We define the next

update by
uk+s ≡ uk+1

vk+s = vk + sAT (f −Auk+1).

This is the concept of Kicking, introduced by Osher, Moa , Dong, and Yin [9].

The Linearized Bregman iterative algorithm with Kicking is:

Linearized Bregman Iteration with Kicking:

Initialize: u = 0, v = 0

while “||f −Au|| does not converge” do

uk+1 = δshrink(vk, µ)

if “uk+1 ≈ uk” then

calculate s from (4.13) and (4.14)

vk+1
i = vki + s(AT (f −Auk+1))i, ∀u ∈ I0

vk+1
i = vki ∀u /∈ I0

else

vk+1 = vk +AT (f −Auk+1)

end if

end while

We ran this algorithm for the same matrix A and original signal ū to see if the

kicking method really reduced the number of iterations required to solve (1.3).

It took Matlab 0.065734 seconds to run this algorithm and reduce the initial

residual to 0.000943 for this A and ū. Notice that the linearized Bregman

algorithm took less than half of the time the linearized Bregman algorithm

without kicking. The number of iterations required to solve (1.3) also decreased

from 5369 iterations to 665 iterations when we applied kicking.

19

Figure 2: Linearized Bregman Algorithm

5 Split Bregman Algorithm

In [5] T. Goldstein, and S. Osher introduced the Split Bregman method to solve

the general optimization problem of the form

min
u∈X
‖Φ(u)‖1 +H(u), (5.1)

where X is a closed, convex set, and both Φ : X → R, and H : X → R

are convex functions. We rewrite (5.1) in terms of the equivalent constrained

minimization problem,

min
u∈X,d∈R

‖d‖1 +H(u) such that d = Φ(u). (5.2)

As in the Basis Pursuit problem, we relax the constraints and work with the

unconstrained problem

min
u∈X,d∈R

‖d‖1 +H(u) +
λ

2
||d− Φ(u)||22, (5.3)

20

where λ > 0 is a constant. By defining

J(u, d) = |d|1 +H(u), (5.4)

we can write (5.3) as

min
u∈X,d∈R

J(u, d) +
λ

2
||d− Φ(u)||22. (5.5)

Notice that this is the same problem that we addressed in section 3 with the

iterative Bregman algorithm. We can thus solve (5.5) by using the iterative

Bregman algorithm, which generates the following sequences:

(uk+1, dk+1) = min
u∈X,d∈R

Dp
J(u, uk, d, dk) +

λ

2
||d− Φ(u)||22, (5.6)

pk+1
u =pku − λ(∇Φ)T (Φ(uk+1)− dk+1), (5.7)

pk+1
d =pkd − λ(dk+1 − Φ(uk+1)). (5.8)

Since the iterative Bregman algorithm is well defined we know that (5.6) has a

minimum and that (pk+1
u , pk+1

d) ∈ ∂J(uk+1, dk+1). Expanding (5.6) we get,

(uk+1, dk+1) = min
u∈X,d∈R

J(u, d)− J(uk, dk)− < pku, u− uk > − < pkd, d− dk >

+
λ

2
||d− Φ(u)||22. (5.9)

In addition notice that,

pk+1
u = pku − λ(∇Φ)T (Φ(uk+1)− dk+1) (5.10)

= −λ(∇Φ)T
k+1∑
i=1

(Φ(ui)− di), (5.11)

21

and

pk+1
d = pkd − λ(dk+1 − Φ(uk+1)) = λ

k+1∑
i=1

(Φ(ui)− di). (5.12)

Define

bk+1 = bk + (Φ(uk+1)− dk+1) =

k+1∑
i=1

(Φ(ui)− di). (5.13)

Then it follows that

pku = −λ(∇Φ)T bk ∀k ≥ 0, (5.14)

and

pkd = λbk ∀k ≥ 0. (5.15)

Applying (5.14) and (5.15) to (5.9) we get

(uk+1, dk+1) = min
u∈X,d∈R

J(u, d)− J(uk, dk) + λ < bk,Φu− Φuk >

− λ < bk, d− dk > +
λ

2
||d− Φ(u)||22

= min
u∈X,d∈R

J(u, d)− J(uk, dk)− λ < bk, d− Φu >

− λ < bk, dk − Φuk > +
λ

2
||d− Φ(u)||22

= min
u∈X,d∈R

J(u, d)− λ < bk, d− Φu > +
λ

2
||d− Φ(u)||22 + C1

= min
u∈X,d∈R

J(u, d) +
λ

2
||d− Φ(u)− bk||22 + C2, (5.16)

where C1 and C2 are constants. This is the Split Bregman method introduced

by Goldstein and Osher [5], which we write more compactly in the following

form:

Split Bregman Algorithm:

Initialize: k=0, u0 = 0, b0 = 0

22

while ||uk − uk−1||22 >tol do

uk+1 = minu H(u) + λ
2 ||d

k − Φ(u)− bk||22

dk+1 = mind |d|+ λ
2 ||d− Φ(uk+1)− bk||22

bk+1 = bk + (Φ(uk+1)− dk+1)

k = k + 1

end while

By using the idea in the Split Bregman algorithm, the Bregman algorithm can

be applied to more general optimization problems of the form

min
u∈X

J(u) +
1

2
||u− f ||22. (5.17)

We apply the Split Bregman Algorithm to the problems of anisotropic TV de-

noising and isotropic TV denoising.

5.1 Anisotropic TV Denoising

We first consider the Anisotropic TV Denoising problem,

min
u

∥∥∥∥∂u∂x
∥∥∥∥

1

+

∥∥∥∥∂u∂y
∥∥∥∥

1

+
µ

2
‖u− f‖22, (5.18)

where f is the noisy image. We will will denote ∂u
∂x by ux and ∂u

∂y by uy. We

consider the equivalent constrained problem to (5.18)

min
u
‖dx‖1 + ‖dy‖1 +

µ

2
‖u− f‖22, such that dx = ux and dy = uy. (5.19)

As in the previous section to solve (5.19) we actually solve the unconstrained

version

min
u,dx,dy

‖dx‖1 + ‖dy‖1 +
µ

2
‖u− f‖22 +

λ

2
‖dx − ux‖22 +

λ

2
‖dy − uy‖22. (5.20)

23

Note that this is the same problem that we addressed when deriving the split

Bregman algorithm. We can thus solve (5.20) by using the split Bregman algo-

rithm

(uk+1, dk+1
x , dk+1

y) = min
u,dx,dy

‖dx‖1 + ‖dy‖1 +
µ

2
‖u− f‖22 +

λ

2
‖dx − ux − bkx‖22

+
λ

2
‖dy − uy − bky‖22, (5.21)

bk+1
x =bkx + (uk+1

x − dk+1
x), (5.22)

bk+1
y =bky + (uk+1

y − dk+1
y). (5.23)

Notice that the functional being minimized in the first step is smooth with

respect to u. To minimize it we simply set its first variational derivative equal

to zero:

0 = µ(uk+1 − f)− λ∇Tx (dkx − uk+1
x − bkx)

−λ∇Ty (dky − uk+1
y − bky), (5.24)

= µuk+1 − µf − λ∇Tx (dkx − bkx) + λuk+1
xx + λuk+1

yy

−λ∇Ty (dky − bky), (5.25)

⇒ (µI + λ∆)uk+1 = µf + λ∇Tx (dkx − bkx) + λ∇Ty (dky − bky). (5.26)

This problem is solved using Dirichlet boundary conditions. For our examples

we choose Ω to be a rectangular domain, and discretize the equations using

a uniform grid. We approximate the partial derivatives using second order,

centered finite differences. The terms of the form ‖d‖pp are approximated by

‖d‖pp ≈ ∆x∆y
∑
|di,j |p.

24

Following [5], we solve the system of equations using the Gauss-Seidel iteration.

Faster methods could also be used, such as the Conjugate Gradient Method,

or Multigrid [6]. The Gauss-Seidel solution can be written componentwise as

follows:

uk+1
i,j = Gki,j =

λ

µ+ 4λ
(uki+1,j + uki−1,j + uki,j+1 + uki,j−1 + dkx,i−1,j − dkx,i,j

+ dky,i,j−1 − dky,i,j − bkx,i−1,j + bkx,i,j − bky,i,j−1 + by,i,j)

+
µ

µ+ 4λ
fi,j . (5.27)

At the boundaries of the domain we used one-sided finite differences instead of

the centered finite differences. Next we solve the problem with respect to dx.

Since the function f(x) = |x| is differentiable in R\{0}, when we minimize with

respect to dx, we get:

0 =

1 + λdkx − λuk+1

x − λbkx dkx > 0

0 dkx = 0

1− λdkx + λuk+1
x + λbkx dkx < 0

⇒ dkx =

(uk+1
x + bkx)− 1

λ (uk+1
x + bkx) ∈

(
1
λ ,∞

)
0 (uk+1

x + bkx) ∈
[
− 1
λ ,

1
λ

]
1
λ + uk+1

x + bkx (uk+1
x + bkx) ∈

(
−∞,− 1

λ

)
= shrink

(
uk+1
x + bkx,

1

λ

)
.

Now observe that the equation for dy is the same as the equation for dx, and

can be obtained by replacing all the x′s by y′s. It follows then that

dky = shrink

(
uk+1
y + bky ,

1

λ

)
. (5.28)

25

Therefore the Split Bregman Anisotropic TV Denoising algorithm can be writ-

ten as follows:

Split Bregman Anisotropic TV Denoising:

Initialize: k=0, u0 = 0, b0 = 0

while ||uk − uk−1||22 >tol do

uk+1 = Gk where G is the Gauss-Seidel function defined earlier.

dk+1
x = shrink

(
∇xuk+1 + bkx,

1
λ

)
dk+1
y = shrink

(
∇yuk+1 + bky ,

1
λ

)
bk+1
x = bkx + (∇xuk+1 − dk+1

x)

bk+1
y = bky + (∇yuk+1 − dk+1

y)

k = k + 1

end while

5.2 Isotropic TV Denoising

In the Isotropic TV model we solve the following problem:

min
u
||∇u||2 +

µ

2
||u− f ||22. (5.29)

We rewrite this problem as a constrained problem,

min
u
||(dx, dy)||2 +

µ

2
||u− f ||22, such that dx = ux and dy = uy, (5.30)

and as in the previous section we relax the constraints and solve the uncon-

strained problem

min
u,dx,dy

||(dx, dy)||2 +
µ

2
||u− f ||22 +

λ

2
||dx − ux||22 +

λ

2
||dy − uy||22. (5.31)

26

Note that this is the same problem that we addressed when deriving the split

Bregman algorithm. We can thus solve (5.31) by using the split Bregman algo-

rithm

(uk+1, dk+1
x , dk+1

y) = min
u,dx,dy

||(dx, dy)||2 +
µ

2
||u− f ||22 +

λ

2
||dx − ux − bkx||22

+
λ

2
||dy − uy − bky ||22, (5.32)

bk+1
x = bkx + (uk+1

x − dk+1
x), (5.33)

bk+1
y = bky + (uk+1

y − dk+1
y). (5.34)

The minimization problem with respect to u in the first step is the same as

in the Anisotropic problem. Hence as before we let uk+1 = Gk where Gk is

the Gauss-Seidel solution given in equation (5.27). The difference between the

Anisotropic problem and the isotropic problem lies in how we calculate dx and

dy. Unlike the anisotropic problem, in the isotropic problem dx and dy are

coupled together. Consider the minimization problem with respect to dx,

0 =
dk+1
x

||(dkx, dky)||2
+ λ(dk+1

x − ukx − bkx). (5.35)

(5.36)

Define

sk =
√
|ukx + bkx|2 + |uky + bky |2. (5.37)

27

We approximate ||(dkx, dky)||2 by sk, which leads to

0 =
dk+1
x

sk
+ λ(dk+1

x − ukx − bkx)

⇒ dk+1
x

(
λ+

1

sk

)
= λ(ukx + bkx)

=
skλ(ukx + bkx)

skλ+ 1
.

As in the previous algorithm dy has the same formula as dx expect the x′s

become y′s, i.e.,

dk+1
y =

skλ(uky + bky)

skλ+ 1
.

From this we get the algorithm.

Split Bregman Isotropic TV Denoising:

Initialize: k=0, u0 = 0, b0 = 0

while ||uk − uk−1||22 >tol do

uk+1 = Gk where G is the Gauss-Seidel function defined earlier.

dk+1
x =

skλ(uk
x+bkx)

skλ+1

dk+1
y =

skλ(uk
x+bkx)

skλ+1

bk+1
x = bkx + (uk+1

x − dk+1
x)

bk+1
y = bky + (uk+1

y − dk+1
y)

k = k + 1

end while

28

6 Numerical Results

6.1 Basis Pursuit Problem

In our numerical experiments we used random matrices generated in Matlab

using randn(m,n). We had Matlab generate random sparse vectors ū. We chose

those vectors such that the number of nonzero entries were equal to 0.1n or

0.05n which were obtained using the routine calls round(0.1n) and round(0.05n)

in MATLAB, respectively. We then defined f = Aū. The stopping criterion

||Auk − f ||2
‖f‖2

< 10−5 (6.1)

was used. In the following tables we show the size of the random matrix A,

the l1 norm of the original vector ū, the l1 norm of our solution, the residual

error, the number of iterations required, and the time needed to perform the

algorithm:

Results of linearized Bregman-l1 without kicking

||ū||1 ||u||1 ||Au− f ||2 Num. of iter. Time required

m n Number of nonzero entries in ū: 0.1n

10 30 1.193162 1.177883 0.000084 17472 0.869771 s

50 100 5.020869 5.020832 0.000712 2334 0.144548 s

50 200 8.173409 6.962439 0.000674 4425 0.306456 s

75 150 6.774425 6.774392 0.000995 296 0.031358 s

m n Number of nonzero entries in ū: 0.05n

10 30 0.549661 0.549658 0.000030 820 0.031979 s

50 100 2.130546 2.130546 0.000484 312 0.026888 s

50 200 4.417850 4.417829 0.000808 993 0.068624 s

75 150 4.318850 4.318850 0.000762 74 0.008143 s

29

Results of linearized Bregman-l1 with kicking

||ū||1 ||u||1 ||Au− f ||2 Num. of iter. Time required

m n Number of nonzero entries in ū: 0.1n

10 30 1.193162 1.178426 0.000083 3970 0.219367 s

50 100 5.020869 5.020938 0.000786 1273 0.104327 s

50 200 8.173409 7.017613 0.000656 786 0.075189 s

75 150 6.774425 6.774426 0.001033 570 0.051384 s

m n Number of nonzero entries in ū: 0.05n

10 30 0.549661 0.549660 0.000032 733 0.039978 s

50 100 2.130546 2.130540 0.000338 49 0.006380 s

50 200 4.417850 4.473151 0.000860 11909 1.103843 s

75 150 4.318850 4.318843 0.000829 34 0.005658 s

From the table we can conclude that in general the linearized Bregman algo-

rithm with kicking yields a result that is almost as good as the result yielded

with the linearized Bregman algorithm but with fewer iterations. The following

should be observed: Both the linearized Bregman algorithm, and the linearized

Bregman algorithm with kicking are accurate with a small residual error. The

linearized Bregman algorithm always returns u such that ||u||1 is smaller than

||ū||1, but in three of the eight tests the linearized Bregman algorithm with kick-

ing yielded a result u with ||u||1 larger than ||ū||1. Furthermore observe that in

most of the tests, the algorithm with kicking solved the problem in significantly

less iterations.

In figures 3 and 4, we plot the residual in the corresponding iterations.

30

Figure 3: Linearized Bregman Algorithm, m=10, n=30, ||u||0 = 0.1n

Figure 4: Linearized Bregman Algorithm, m=50, n=200, ||u||0 = 0.05n

Notice that the graphs printed in figure 3 are the graphs corresponding to

the first row of both of the above tables. Also notice that the graphs printed

in figure 4 are the graphs corresponding to seventh row of both of the above

tables. In the first case we see that the Linearized Bregman algorithm with

kicking has fewer iterations than the linearized Bregman algorithm because it

successfully removes the stagnation periods. The second case shows us that

when the linearized Bregman algorithm with kicking had more iterations it was

because the algorithm not only failed to remove the stagnation periods but

increased the number and length of the periods.

31

6.2 Image Denoising Problem

To test the algorithms in the TV denoising problem, we considered several

images, added noise to it, and tried to recover from it the original image. We

obtained our images from a list of images already available in Matlab. Suppose

that X is the matrix representation of an image, of size m×n. To add noise to

X we created a random matrix N using the Matlab command rand(m,n). We

then defined our noisy image to be f = X + cN , where c > 0 is a constant.

For our experiments we used µ = 0.1, λ = 0.2, c = 20, and tolerance = 10−3.

In tables 1 and 2 we show the results for the Anisotropic and Isotropic TV

denoising algorithms, respectively. The relative error is measured by ||u−X||22.

Image Size Anisotropic TV Denoising
n m Number of Iterations Relative Error Time (s)

Fluid Jet 400 300 15 0.066469 45.265365 s
Bone 367 490 13 0.050428 57.263076 s

Gatlinburg 480 640 9 0.034703 70.699119 s
Durer 648 509 6 0.024618 53.494445 s

Durer Detail 359 371 10 0.084235 33.669978 s
Cape Cod 360 360 14 0.061195 44.381875 s

Clown 200 320 11 0.086670 17.690584 s
Earth 257 250 10 0.071599 16.257617 s

Mandrill 480 500 5 0.030040 33.262180 s

Table 1: Results for the Anisotropic TV denoising algorithm

32

Image Size Isotropic TV Denoising
n m Number of Iterations Relative Error Time (s)

Fluid Jet 400 300 9 0.066773 8.016607 s
Bone 367 490 8 0.050665 11.391311 s

Gatlinburg 480 640 7 0.034764 17.688556 s
Durer 648 509 5 0.023862 14.446595 s

Durer Detail 359 371 9 0.080530 9.333276 s
Cape Cod 360 360 9 0.061358 9.138667 s

Clown 200 320 8 0.086626 4.106909 s
Earth 257 250 8 0.071367 4.008097 s

Mandrill 480 500 5 0.029832 10.545355 s

Table 2: Results for the Isotropic TV denoising algorithm

From the tables we see that the isotropic TV denoising is faster and just as

accurate as the anisotropic denoising version of the algorithm. In our tests we

found that for the fluid jet, bone, Gatlinburg, and cape cod images, the sequence

of residuals converged monotonically towards an value that was lower than that

of the original noisy image. We found that the relative error in the iteration

associated to the clown image was oscillatory, and converged to value higher

than the value for the original noisy image. The last four images showed a

decrease in the error in the first iteration, after which the errors monotonically

increased and converged to a point of relative error higher than the relative

error of the original noisy image. This can be seen from the following images

and graphs.

33

Figure 5: Split Bregman Results using Fluid Jet Image

Figure 6: Split Bregman Error Results using the Fluid Jet Image

34

Figure 7: Split Bregman Results using Clown Image

Figure 8: Split Bregman Error Results using the Clown Image

35

Figure 9: Split Bregman Results using Durer Detail Image

Figure 10: Split Bregman Error Results using the Durer Detail Image

36

We showed in section 3.1 that the relative error of the iterative Bregman

algorithm decreased monotonically. However the last two images displayed in

this paper show that the relative error of the Split Bregman algorithm with both

isotropic and anisotropic filters does not necessarily converge monotonically. We

do not currently have a satisfactory explanation for this behavior, and it would

be interesting to explore it further. We would also like to see if other properties

of convergence discussed in section 3.1 hold for the Split Bregman algorithm.

7 Further Study

When experimenting with these algorithm we observed several surprising re-

sults. In the linearized algorithms we noticed that occasionally the linearized

algorithm without kicking performed better than the algorithm with kicking. It

would be interesting to run more tests and experiment with different conditions

to figure out why this happens, and if there was a way to correct this problem.

In addition we would like to investigate why in two of our tests the kicking

version of the linearized algorithm yielded long stagnation periods.

In the image denoising problem the logarithm of the relative error did not al-

ways converge to a point below the initial error. Five of the nine images tested

had this problem. In the future we would like to run more tests and see if

by changing µ and λ we can fix this problem. We would also want to investi-

gate mathematically why the split Bregman algorithm proved not to be strictly

monotonic.

37

8 Matlab Code

The following Matlab codes were written to implement the Linearized Breg-

man Iterative Algorithm, and the Linearized Bregman Iterative Algorithm with

kicking.

function lineartest

clc; clear all;

m=50; n=200;

tic

%Calculate random matrix

A = randn(m,n);

%Code for Sparse Vector (u bar)

nz=round(0.05*n); %Number of nonzero numbers

z=n-nz; %Number of zero numbers

ub= rand(n,1); %Vector of Random Elements

b=randperm(n); %Random Permutation Vector of m elements.

ub(b(1:z))=0 ; %Uses the permutation vector to find z random places,

%and sets them equal to zero.

%Calculate f

f = A*ub;

fprintf(’Linear Algorithm \n’)

[k,u,r] = LinAlgorithm(A,f,n);

fprintf(’Number of Iterations=%.0f\n’,k);

fprintf(’||u||_1=%f\n’, norm(u,1));

fprintf(’||ub||_1= %f\n’, norm(ub,1));

fprintf(’||Au-f||_1 = %f\n’, norm(A*u-f,1));

figure(1)

38

i=(1:k);

plot(i,r(i))

title(’Linear Algorithm with out kicking’)

xlabel(’Number of Iterations’)

ylabel(’log of residual’)

fprintf(’Linear Algorithm with Kicking\n’);

[l,k,u,r]=LinAlgKicking(A,f,n);

fprintf(’Number of times going into if statement=%.0f\n’,l);

fprintf(’Number of Iterations=%.0f\n’,k);

fprintf(’||u||_1=%f\n’, norm(u,1));

fprintf(’||ub||_1= %f\n’, norm(ub,1));

fprintf(’||Au-f||_1 = %f\n’, norm(A*u-f,1));

figure(2)

i=(1:k);

plot(i,r(i))

title(’Linear Algorithm with kicking’)

xlabel(’Number of Iterations’)

ylabel(’log of residual’)

end

I used the following code to run the Anisotropic and Isotropic TV denoising

codes,

function imagetest

clc; clf; clear all;

clear X map;

imglist = {’flujet’, ... Fluid Jet

’spine’, ... Bone

39

’gatlin’, ... Gatlinburg

’durer’, ... Durer

’detail’, ... Durer Detail

’cape’, ... Cape Cod

’clown’, ... Clown

’earth’, ... Earth

’mandrill’, ... Mandrill

’spiral’};

load(imglist{8},’X’,’map’);

c=20; %As c increases the noise in the image gets worse.

noise=randn(size(X));

f=X+c*noise;

mu=.1;lambda=.2; Tol=10^(-3);

size(X)

fprintf(’Split Anisotropic Algorithm \n’)

[u1,l,k]=SplitAnisotropic2(f,X, Tol,lambda, mu);

fprintf(’Number of iterations %0.f \n’,k-1)

p = norm(u1-X,2)/norm(X,2);

fprintf(’Relative error, ||u-X||_2/||X||_2 = %f \n’, p)

fprintf(’Split Isotropic Algorithm \n’)

[u2,ll,kk] = SplitIsotropic2(f,X,Tol,lambda,mu);

pp = norm(u2-X,2)/norm(X,2);

fprintf(’Number of iterations %.0f \n’, kk-1)

fprintf(’Relative error, ||u-X||_2/||X||_2 = %f \n’, pp)

40

figure(1)

colormap(’gray’)

subplot(2,2,1)

image(X)

title(’Original Image’)

subplot(2,2,2)

image(f)

title(’Noise Image’)

subplot(2,2,3)

image(u1)

title(’Split Anisotropic Algorithm’)

subplot(2,2,4)

image(u2)

title(’Split Isotropic Algorithm’)

figure(2)

subplot(1,2,1)

j=(1:k);

plot(j-1, log(l(j)))

xlabel(’Number of Iterations’)

ylabel(’log of Relative Error’)

title(’Error of Anisotropic Algorithm’)

subplot(1,2,2)

i=[1:kk];

41

plot(i-1, log(ll(i)))

xlabel(’Number of Iterations’)

ylabel(’log of Relative Error’)

title(’Error of Istropic Algorithm’)

8.1 Linearized Bregman

The following code implements the linear bregman iterative algorithm,

function [k,u,r]=LinAlgorithm(A,f,n)

tic

%Initialize

u=zeros(n,1); v = zeros(n,1);

delta=.01; mu=1000; epsilon=10^(-5);

%Algorithm

k=0;

while (norm(f-A*u,2)/norm(f,2))>epsilon %stoping criterion

k=k+1;

v = v + A’*(f-A*u);

u = delta*shrink(v,mu);

r(k) = log(norm(f-A*u,2));

end

toc

end

8.2 Linear Bregman with kicking

The following code implements the linear bregman iterative algorithm with kick-

ing,

function [l,k,u,r]=LinAlgKicking(A,f,n)

42

tic

%Initialize

u=zeros(n,1); u1=zeros(n,1); v = A’*(f-A*u);

delta=.01; mu=100; epsilon=10^(-5);

%Algorithm

k=0; l=0; o=0;

while (norm(f-A*u,2)/norm(f,2))>epsilon %stoping criterion

k=k+1;

u1=u;

u = delta*shrink(v,mu);

if norm(abs(u-u1),2)<10^(-8) ;

l= l +1 ;

x=A’*(f-A*u);

for i=1:n

if abs(u(i)) < 10^(-10)

s(i,1)= ceil((mu*sign(x(i))-v(i))/x(i));

else

s(i,1) = 10^(100);

end

end

ss= min(s);

if ss==10^(100)

ss= 1;

end

for i=1:n

if abs(u(i))<10^(-10)

v(i) = v(i) + ss*x(i);

43

else

v(i) = v(i) ;

end

end

else

v = v + A’*(f-A*u);

end

r(k) = log(norm(f-A*u,2));

if k>3 & norm(abs(u-u1),2)<10^(-10)

break

end

end

toc

end

8.3 Anisotropic TV Denoising

The following code implements the split Bregman Algorithm for Anisotropic

TV denoising.

function [u,p,k]=SplitAnisotropic2(f,X,Tol,lambda,mu)

tic

n=size(f,1); m=size(f,2);

n1=n-1; m1=m-1;

u=f; dx =zeros(n,m); dy=zeros(n,m); bx=zeros(n,m); by=zeros(n,m); k=0;

nn(1) = norm(u,2); p(1) = norm(f-X,2)/norm(X,2);

while nn(k+1) >Tol

k=k+1;

u1 = u ;

44

%Calculate u.

for i=2:n1

for j=2:m1

u(i,j)= g(u,dx,dy, bx, by,f, lambda, mu, i,j);

end

end

%Compute the ds

for i=2:n1

for j=1:m

dx(i,j) = shrink((u(i+1,j)- u(i-1,j))/2+bx(i,j),1/lambda);

end

end

for j=1:m

dx(1,j) = shrink((u(1+1,j)- u(1,j))+bx(1,j),1/lambda);

end

for j=1:m

dx(n,j) = shrink((u(n,j)- u(n-1,j))+bx(n,j),1/lambda);

end

for j=2:m1

for i=1:n

dy(i,j) = shrink((u(i,j+1) - u(i,j-1))/2 +by(i,j),1/lambda);

end

end

for i=1:n

dy(i,1) = shrink((u(i,2) - u(i,1)) +by(i,1),1/lambda);

end

for i=1:n

45

dy(i,m) = shrink((u(i,m) - u(i,m-1)) +by(i,m),1/lambda);

end

%Calculate the b’s

for i=2:n1

for j=1:m

bx(i,j) = bx(i,j) + (u(i+1,j)-u(i-1,j))/2 - dx(i,j) ;

end

end

for j=1:m

bx(1,j) = bx(1,j) + (u(1+1,j)-u(1,j)) - dx(1,j) ;

end

for j=1:m

bx(n,j) = bx(n,j) + (u(n,j)-u(n-1,j)) - dx(n,j) ;

end

for i=1:n

for j=2:m1

by(i,j) = by(i,j) + (u(i,j+1)-u(i,j-1))/2 - dy(i,j) ;

end

end

for i=1:n

by(i,1) = by(i,1) + (u(i,1+1)-u(i,1)) - dy(i,1) ;

end

for i=1:n

by(i,m) = by(i,m) + (u(i,m)-u(i,m-1)) - dy(i,m) ;

end

nn(k+1) = norm(u-u1,2)/norm(u,2);

nn(k); nn(k+1);

46

p(k+1)= norm(u-X,2)/norm(X,2);

end

toc

end

8.4 Isotropic TV Denoising

The following matlab code implements the split Bregman algorithm for isotropic

TV denoising.

function [u,p,k]=SplitIsotropic2(f,X,Tol, lambda,mu)

tic

n=size(f,1); m=size(f,2);

n1=n-1; m1=m-1;

u=f; dx =zeros(n,m); dy=zeros(n,m); bx=zeros(n,m); by=zeros(n,m);

k=0; p(1) = norm(f-X,2)/norm(X,2);nn(1) = norm(u,2);

while nn(k+1) >Tol

k=k+1;

u1 = u ;

for i=2:n1

for j=2:m1

u(i,j)= g(u,dx,dy, bx, by,f, lambda, mu, i,j);

end

end

%Compute the sx’s

for i=2:n1

for j=2:m1

s(i,j) = sqrt(abs((u(i+1,j)-u(i-1,j))/2 + bx(i,j))^2

+ abs((u(i,j+1)-u(i,j-1))/2 + by(i,j))^2);

47

end

end

for i=1:n1

j=1;

s(i,j) = sqrt(abs((u(i+1,j)-u(i,j)) + bx(i,j))^2

+ abs((u(i,j+1)-u(i,j)) + by(i,j))^2);

end

for j=1:m1

i=1;

s(i,j) = sqrt(abs((u(i+1,j)-u(i,j)) + bx(i,j))^2

+ abs((u(i,j+1)-u(i,j)) + by(i,j))^2);

end

for i=2:n

j=m;

s(i,j) = sqrt(abs((u(i,j)-u(i-1,j)) + bx(i,j))^2

+ abs((u(i,j)-u(i,j-1)) + by(i,j))^2);

end

for j=2:m

i=n;

s(i,j) = sqrt(abs((u(i,j)-u(i-1,j)) + bx(i,j))^2

+ abs((u(i,j)-u(i,j-1)) + by(i,j))^2);

end

for j=1:m1

i=1;

s(i,j) = sqrt(abs((u(i+1,j)-u(i,j)) + bx(i,j))^2

+ abs((u(i,j+1)-u(i,j)) + by(i,j))^2);

end

48

%Compute the d’s

for i=2:n1

for j=1:m

dx(i,j)= (s(i,j)*lambda*((u(i+1,j)-u(i-1,j))/2+bx(i,j)))

/(s(i,j)*lambda + 1);

end

end

for j=1:m

i=1;

dx(i,j)= (s(i,j)*lambda*((u(i+1,j)-u(i,j))+bx(i,j)))

/(s(i,j)*lambda + 1);

end

for j=1:m

i=n;

dx(i,j)= (s(i,j)*lambda*((u(i,j)-u(i-1,j))+bx(i,j)))

/(s(i,j)*lambda + 1);

end

for i=1:n

for j=2:m1

dy(i,j) = (s(i,j)*lambda*(((u(i,j+1)-u(i,j-1))/2 + by(i,j))))

/(s(i,j)*lambda +1);

end

end

for i=1:n

j=1;

dy(i,j) = (s(i,j)*lambda*(((u(i,j+1)-u(i,j)) + by(i,j))))

/(s(i,j)*lambda +1);

49

end

for i=1:n

j=m;

dy(i,j) = (s(i,j)*lambda*(((u(i,j)-u(i,j-1))/2 + by(i,j))))

/(s(i,j)*lambda +1);

end

%Compute the b’s

for i=2:n1

for j=1:m

bx(i,j)= bx(i,j) + ((u(i+1,j)-u(i-1,j))/2 - dx(i,j));

end

end

for j=1:m

i=1;

bx(i,j)= bx(i,j) + ((u(i+1,j)-u(i,j)) - dx(i,j));

end

for j=1:m

i=n;

bx(i,j)= bx(i,j) + ((u(i,j)-u(i-1,j)) - dx(i,j));

end

for i=1:n

for j=2:m1

by(i,j) = by(i,j) + ((u(i,j+1)-u(i,j-1))/2 - dy(i,j));

end

end

for i=1:n

j=1;

50

by(i,j) = by(i,j) + ((u(i,j+1)-u(i,j)) - dy(i,j));

end

for i=1:n

j=m;

by(i,j) = by(i,j) + ((u(i,j)-u(i,j-1)) - dy(i,j));

end

nn(k+1) = norm(u-u1,2)/norm(u,2);

p(k+1)= norm(u-X,2)/norm(X,2);

end

toc

end

51

References

[1] L. M. Brègman. A relaxation method of finding a common point of convex

sets and its application to the solution of problems in convex programming.

Z̆. Vyčisl. Mat. i Mat. Fiz., 7:620–631, 1967.

[2] Bernard Dacorogna. Introduction to the calculus of variations. Imperial

College Press, London, second edition, 2009. Translated from the 1992

French original.

[3] Ivar Ekeland and Roger Témam. Convex analysis and variational prob-

lems, volume 28 of Classics in Applied Mathematics. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, english edition, 1999.

Translated from the French.

[4] Enrico Giusti. Minimal surfaces and functions of bounded variation, vol-

ume 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984.

[5] Tom Goldstein and Stanley Osher. The split Bregman method for L1-

regularized problems. SIAM J. Imaging Sci., 2(2):323–343, 2009.

[6] Arieh Iserles. A first course in the numerical analysis of differential equa-

tions. Cambridge Texts in Applied Mathematics. Cambridge University

Press, Cambridge, second edition, 2009.

[7] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point

method for large-scale l1-regularized logistic regression. J. Mach. Learn.

Res., 8:1519–1555 (electronic), 2007.

[8] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao

Yin. An iterative regularization method for total variation-based image

restoration. Multiscale Model. Simul., 4(2):460–489 (electronic), 2005.

52

[9] Stanley Osher, Yu Mao, Bin Dong, and Wotao Yin. Fast linearized Breg-

man iteration for compressive sensing and sparse denoising. Commun.

Math. Sci., 8(1):93–111, 2010.

[10] Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman

iterative algorithms for l1-minimization with applications to compressed

sensing. SIAM J. Imaging Sci., 1(1):143–168, 2008.

53

