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Abstract The p-median problem (PMP) is inherently a graph theoretic problem with
applications in location theory and optimalization. Due to the p-median problem being NP-
hard, most research in it is reduction based, generally using reduction tests and bounding,
or exploring specific solvable scenarios. This paper examines and summarizes the pseudo-
Boolean formulation of the problem developed by AlBdaiwi et al and applies it to a different
formulation of the problem by Elloumi, creating an alternate formulation of Elloumi’s model.
In doing so, we demonstrate that the model developed by AlBdaiwi et al. is identical to
the model developed by Cornuejols et al., albeit in a pseduo-Boolean formulation. We then
provide a computational comparison of the different models. Ultimately, we offer a pseduo-
Boolean formulation of the p-median problem that is more integer-friendly than that of
AlBdaiwi. In comparing computational models, we show that the pseudo-Boolean Cornuejols
model is slightly faster than the AlBdaiwi model, and thus assumedly, so is the pseudo-
Boolean Elloumi model.

1 Introduction

The p-median problem is an NP-hard problem concerning the minimal weighted distance
between a subset of points on a graph. We define the problem in terms of facilities and users
as follows:

Given

• I, a set of n nodes, each of which has a particular demand

• J as set of m nodes, each of which serves as a possible facility site.
Notice that I and J are not necessarily disjoint, and in some cases may be identical.

• dij : IxJ → R+, a distance function between node i and node j

• ai, a demand or weighting variable for a demand or client i

• p ≤ m, some subset of facilities that we want to open,

we want to determine which subset of p facilities to open in order to minimize the sum of
the demand-weighted distances from each user to its nearest open facility. We assume that
each facility has unlimited production capacity and that there are no restrictions on site
placement.
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1.1 History of the p-median Problem

The p-median problem is a generalization of a problem first posed by Fermat: given
three distinct points on a plane, find a median point on the plane that minimizes the sum of
the distances from each of these points to the median point. Weber (1909) generalized this
to n weighted points on the plane, minimizing the sum of the weighted distance from each
of these points to the median point.

The Weber problem was reformulated by Hakimi (1964) to apply to a graph by intro-
ducing the notions of the absolute center and the absolute median. Hakimi first defines a
distance function d(x, y) on the graph G by the length of the shortest path in G between the
points x and y, where the length of a path is the sum of the weights of the branches of that
path. He then defines the absolute center to be the point x0 on an element of a weighted
n-vertex of G if for all vertices vi with weight hi, and every point x on the graph G,

max1≤i≤n hid(vi, x0) ≤ max1≤i≤n hid(vi, x).

That is, the maximal weighted distance from x0 to any vertex is less than than that of any
other point on the graph.

Similarly, y0 is defined as the absolute median if for each point y in G

n∑
i=1

hid(vi, y0) ≤
n∑
i=1

hid(vi, y)

So the sum of the weighted distances from y0 to each of the vertices vi is less than that of
any other point on G.

Hakimi goes on to show that an absolute median of a graph is always at a vertex of a
graph, thus reducing the set of possible solutions to only the vertices of the graph. In a later
paper (1965), he defines a distance function between a vertex of G, vi, and a set of p points,
Xp, as d(vi, Xp) = min{d(vi, x1), d(vi, x2), ..., d(vi, xp)} He is then finally able to define the
p-median problem:
A set of points X∗p is a p-median of G if for every Xp on G

n∑
i=1

hid(vi, X
∗
p ) ≤

n∑
i=1

hid(vi, Xp)

The classic formulation of the p-median problem was developed by Revelle and Swain
in 1970, and is given below.

The Classic formulation (RF)

min Z =
n∑
i=1

m∑
j=1

aidijxij (1)

s.t.
m∑
j=1

xij = 1 for i = 1, 2, ..., n (2)

m∑
j=1

xjj = p (3)
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xij ≤ xjj for i = 1, 2, ..., n; j = 1, 2, ...,m with i 6= j (4)

xij ∈ {0, 1} for i = 1, 2, ..., n j = 1, 2, ...,m. (5)

Here, the objective function minimizes the total weighted distance accrued by assigning
each demand node to its closest user facility. Constraint (2) ensures that every demand node
is satisfied by exactly one facility. Constraint (3) ensures that p nodes assign themselves
as the facility supplying their demand; that is, p potential sites are assigned as facilities.
Constraint (4) ensures that a site i can only assign to a site j if site j is assigned as a facility.
Constraint (5) indicates the binary nature of the xij variables in that facility i supplies client
j or not. In particular,

xij =

{
1 if demand at i assigns to facility j
0 otherwise

xjj =

{
1 if a facility is sited at j and meets the demand at j as well
0 otherwise

This model is used as the starting point for various reduction techniques, as in many
of the papers mentioned below.

1.2 Reduction Techniques

Since the p-median problem is NP-hard, most research into the problem explores meth-
ods that reduce the number of variables or constraints, and hence computation time, or at-
tempt to substitute certain steps of the problem with polynomially solvable algorithms. Vari-
ous hybrid models have been suggested, such as Rosing and Revelle’s heuristic concentration,
a combination of a heuristic approach with linear programming using the branch-and-bound
algorithm (1997). AlBdaiwi et al. (2011) analyze the problem through pseudo-Boolean
polynomials, combining the work of Hammer (1968) and Beresnev (1973) in an attempt to
eliminate redundant variables through an algebraic representation of the elements of the
cost matrix. Church (2003) develops a model called COBRA that reduces the number of
variables and constraints by eliminating redundant variables in the model. Elloumi (2010)
provides a mixed-integer formulation of the problem by adapting a simple plant location
problem developed by Cornuejols et a.l in 1980.

1.3 Goals

This paper summarizes the models developed by AlBdaiwi et al. and Elloumi respec-
tively and provides a brief worked example for each of them. We then apply AlBdaiwi’s
pseduo-Boolean formulation to Elloumi’s model, obtaining a more integer-friendly model
than that of AlBdaiwi et al. but with comparable processing speed. We then compare the
different models with their different reduction techniques and analyze their efficacy in re-
ducing the problems sizes of various benchmark problems. The paper ends with conclusions
and potential for future research.
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2 The Pseudo-Boolean Formulation

Definition 1. A pseudo-Boolean function f is a function of the form f : {0, 1}n → R for
n ∈ N

By this definition, notice that any pseudo-Boolean function f can be uniquely written
as

f(x) = a+
∑
i

aixi +
∑
i<j

aijxixj +
∑
i<j<k

aijkxixjxk + ... (6)

The 2011 paper by AlBdaiwi et al. begins with the cost matrix of a p-median problem
and manipulates it so that the objective function can then be written as a pseduo-Boolean
function.
We summarize this formulation and provide a brief computational example for clarity in how
the algorithm works.

2.1 The AlBdaiwi formulation

The formulation developed by AlBdaiwi et al. is penalty based. That is, the model begins
at the closest site to a demand source. If the demand is not met at that site, a penalty
in the form of the weighted distance between that site and the next closest site is accrued,
and the next closest site is considered. This process is repeated, accummulating penalties,
until a site is reached that will meet the initial site’s demand. In order to formulate this
concept, we must institute both an ordering based upon distance and a penalty based upon
the difference in weighted distance between sites of adjacent nearness.

Let C = [cij] be a cost matrix that defines the cost of supplying a demand at node i from a
facility at node j.
For client i define Πi = (πij, ..., πnj) to be an ordering of 1, ..., n such that ciπij ≤ ciπik for all
i, k ∈ {1, ..., n}. That is, Πi is a permutation of 1, ..., n such that in row i of C, the cost in
column j is less than the cost in column k if j < k for all i, k ∈ {1, ..., n}.
We also define ∆i = (δi1, ..., δin) where δi1 = ciπi1 and δir = ciπir − ciπi(r−1)

for r = 2, ..., n.

That is, ∆i is a vector of length n whose first entry is the least weighted distance from site i,
and entry r being the difference in weighted distance between the r and r − 1 farthest sites
from i.
Finally, let y = (y1, ..., yn) be such that yi = 0 if a plant is open at location i and 1 otherwise.
So y is a vector representing which sites have facilities located at them.
Given this notation, we can now define the cost of satisfying a demand at i as

f i(y) = δi1 +
n∑
k=2

δik ·
k−1∏
r=1

yπir (7)

In order to aggregate the Πi and ∆ivectors, we define the ordering matrix Π = [πij] and the
difference matrix ∆ = [δij]. Notice that while ∆ is distinct for a given cost matrix, Π is not
necessarily so in the case that two sites have equal weighted distance from a third. With
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this notation, we can now represent the objective function of the p-median problem as

B(y) =
n∑
i=1

f i(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

yπir

}
(8)

But now the model is formulated strictly in terms of yj = 1 − xjj. We can make this
substitution for xjj in constraints (3) and (4) in the original formulation to form constraint
(10), but we still must consider how else the constraints on the xij terms translate to con-
straints on the yj terms.

To do this, when presented with a multi-part monomial c1yaybyc... in the objective
function, we replace it with c1zk for some k. By doing this, we transform the objective
function into a linear combination of single-part monomials. For ease of notation, we define
Sk to be the set of indices of the yi terms corresponding to zk. For example, if z1 = y1y2y4y7,
then S1 = {1, 2, 4, 7}.

In application, zk is an indicator for the t closest sites to some site j where t = |Sk|.
So zk = 0 if any yi has a plant located at it and zk = 1 if no yj has a plant located at it for

j ∈ Sk. So zk ≥
∑
j∈Sk

yj − |Sk|+ 1, which gives us constraint (11).

And thus the statement of the whole formulation is:

The AlBdaiwi formulation (AF)

min B(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

yπir

}
(9)

s.t.
n∑
i=1

yi = n− p (10)∑
i∈Sk

yi − zk ≤ |Sk| − 1 for each Sk corresponding to each zk (11)

yi ∈ {0, 1} for i = 1, 2, ..., n (12)

zk ≥ 0 for each k constructed. (13)

2.2 Reductions in the pseudo-Boolean formulation

As mentioned in the introduction, much of the research on the p-median problem focuses on
eliminating variables and constraints to make runtime more efficient. This pseudo-Boolean
formulation provided by AlBdaiwi et al. has two principle methods of reduction: truncation
and combining like terms in the objective function.

A brief argument for truncation, also called chopping, is as follows:
Suppose we are on a network with n nodes and have to place p facilities. Consider a

node i. In creating Πi we order the sites by weighted distance from i. In the worst case
scenario, all p sites are the farthest possible sites from i: those at Πi[n− p], ...,Πi[n]. i will
then assign to the closest one: the site (n− p) farthest from i. But in this case, i will never
assign to a site farther than (n − p), so we may eliminate the farthest (p − 1) sites from i.
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The paper by Rosing, Revelle, and Rosing (1979) gives more details.
In relation to the pseudo-Boolean formulation, truncation is effected by replacing the

largest p elements of row i in C with ciπi(n−p+1)
. That is, we replace the largest p values in each

column of the cost matrix C with the (p+1) largest value in the respective column.

In formulating the pseudo-Boolean function, we have instances in which the terms
of a monomial are identical and we may combine them. For example, given 4y1y3y6y8 +
7y3y8y1y6, we may combine them to get 11y1y3y6y8. Combining similar variables in the
objective function allows us the potential of removing variables and constraints, as in the
given example, we effectively replaced the y3y8y1y6 variable with y1y3y6y8.

More concretely, what occurs in this scenario is that a site i has the same k closest
sites as a site j. Then the decision of where to assign a facility is the same for j as it is for
i, and we may substitute the corresponding variables of i in for j. In order to illustrate the
process of forming the ordering and difference matrices, as well as the reduction process, the
following computational example is given. This example does not reduce by truncation, as
such a reduction is not unique to this formulation, and may confuse the process.

2.3 A computational example

Consider a p-median problem with m = 5 potential facility sites, n = 5 clients and p = 2
facilities to place, with cost matrix

C =


5 7 3 9 12
4 2 1 4 7
11 7 4 8 10
7 5 9 2 2
10 6 9 3 4

 .

A possible ordering matrix for C is

Π =


3 1 2 4 5
3 2 1 4 5
3 2 4 5 1
5 4 2 1 3
4 5 2 3 1


which has corresponding difference matrix

∆ =


3 2 2 2 3
1 1 2 0 3
4 3 1 2 1
2 0 3 2 2
3 1 2 3 1

 .

We can then formulate the objective function in terms of the pseudo-Boolean polyno-
mial:

B(y) = 3 + 2y3 + 2y1y3 + 2y1y2y3 + 3y1y2y3y4

+ 1 + 1y3 + 2y1y3 + 0y1y2y3 + 3y1y2y3y4

+ 4 + 3y3 + 1y2y3 + 2y2y3y4 + 1y2y3y4y5
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+ 2 + 0y5 + 3y4y5 + 2y2y4y5 + 2y1y2y4y5

+ 3 + 1y4 + 2y4y5 + 3y2y4y5 + 1y2y3y4y5

Combining similar terms, we get

B(y) = 13 + 6y3 + 1y4 + 4y1y3 + 1y2y3 + 5y4y5 + 2y1y2y3

+ 2y2y3y4 + 5y2y4y5 + 6y1y2y3y4 + 2y1y2y4y5 + 2y2y3y4y5

= 13 + 6y3 + 1y4 + 4z1 + 1z2 + 5z3 + 2z4 + 2z5 + 5z6 + 6z7 + 2z8 + 2z9

Notice that while the original objective function had 23 non-zero monomials, the reduced
objective function has only 12. We can now formulate the model as:

min B(y) = 13 + 6y3 + 1y4 + 4z1 + 1z2 + 5z3 + 2z4 + 2z5 + 5z6 + 6z7 + 2z8 + 2z9

s.t.
5∑
j=1

yj = 3∑
j∈Sk

yj − zk ≤ |Sk| − 1 for each Sk corresponding to each zk

yj ∈ {0, 1} for j = 1, 2, ..., 5

zk ≥ 0 for each k constructed.

3 The Elloumi formulation

The formulation of the p-median problem developed by Elloumi (2008) is also a penalty-based
formulation, and as we will see, is very similar to the pseudo-Boolean model developed by
AlBdaiwi et al. The Elloumi model is based upon a formulation developed by Cornuejols
et al. in 1980, which we will show is identical to the AlBdaiwi formulation when translated
into a pseudo-Boolean form. For ease of notation, hereafter we will refer to the different
formulations by their initials: the classical model developed by Revelle and Swain is RF,
the pseudo-Boolean model developed by AlBdaiwi et al. is AF, Elloumi’s formulation is EF,
and Cornuejol et al.’s formulation is CF. We now introduce notation common to CF and EF.

For a site i, let Ki be the number of differrent distances from site i to any facility. Notice
that Ki does not necessarily equal p as some facilities may be equidistant from i, so Ki ≤ p.
Let D1

i < D2
i < ... < DKi

i be these distances in increasing order.
Let V k

i = {j : dij ≤ Dk
i }. That is, V k

i is the neighborhood composed of the k closest facilities
to i, for k = 1, 2, ..., Ki.
With these definitions, V 1

i is the equidistant set of sites closest to i, and V Ki
i is the set of all

facility sites. Then in an optimal solution, a client i will assign to the smallest neighborhood
V k
i containing an open facility.
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3.1 The Cornuejols formulation

In formulating CF, Cornuejols et al. define yj equal to the xjj variables used in RF. That
is, yj = 1 if a facility is open and 0 if closed. Notice that this definition of yj is opposite
that of the AF definition of yj. While it is confusing, we intentionally keep this discrepancy,
as its resolution identifies the two models. The CF also introduces binary variables of the
form z. In particular, zki = 1 if and only if every facility in V k

i is closed, and 0 otherwise.
Alternately, zki = 0 if any facility in V k

i is open, and 1 otherwise. Using these zki and yi we
can now present Cornuejols et al.’s formulation of the p-median problem.

The Cornuejols formulation (CF)

min Z(z, y) =
n∑
i=1

{
D1
i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

}
(14)

s.t.
m∑
j=1

yj = p (15)

zki +
∑

j:dij≤Dk
i

yj ≥ 1 for i = 1, 2, ..., n; k = 1, 2, ..., Ki (16)

zKi
i = 0 for i = 1, 2, ..., n (17)

zki ≥ 0 for i = 1, 2, ..., n; k = 1, 2, ..., Ki (18)

yj ∈ {0, 1} for j = 1, 2, ...,m (19)

Constraint (15) is the same as constraint (3) in RF; that is, it ensures that exactly p
sites will assign facilities to be opened. Constraint (16) ensures that for a given client i, either
zki = 1 or at least one facilitiy in V k

i is open. Constraint (17) ensures that for a given client i,
at least one facility in the whole neighborhood V Ki

i is open. This constraint is redundant, as
given constraint (15), p sites will be assigned, so zKi

i will certainly be 0. We will heretofore
ignore this contraint in our own developments of the model. Constraints (18) and (19) are
positivity and binary constraints for the respective variables. The objective function (14)
sums the total weighted distance from each client i to the facility site chosen to provide for it.

Remark 1. AF and CF are functionally identical.

We restate the formulation of AlBdaiwi et al. for ease of comparison:

The AlBdaiwi formulation (AF)

min B(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

yπir

}
s.t.

n∑
i=1

yi = n− p∑
i∈Sk

yi − zk ≤ |Sk| − 1 for each Sk corresponding to each zk
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yi ∈ {0, 1} for j = 1, 2, ..., n

zk ≥ 0 for each k constructed.

The immediate difference in the two models is that they have switched the definitions
of i and j. That is, in the AlBdaiwi et al. model, i represents facilities and j demand, while
in most other models i represents demand and j facilities. To mitigate this, we present an
altered formulation of CF, using the AF definition of yj. Hence we replace every yj in CF
with ȳj = 1− yj and zki with z̄ki = 1− zki .

The altered Cornuejols formulation (CF’)

min Z(z, y) =
n∑
i=1

{
D1
i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

}
(20)

s.t.
n∑

j=m

ȳj = m− p (21)∑
j:dij≤Dk

i

ȳj − zki ≤ |Dk
i | − 1 for i = 1, 2, ..., n; k = 1, 2, ..., Ki (22)

z̄i
Ki = 1 for i = 1, 2, ..., n (23)

ȳj ∈ {0, 1} for j = 1, 2, ...,m (24)

z̄i
k ≥ 0 for i = 1, 2, ..., n; k = 1, 2, ..., Ki (25)

Computations:
Let ȳj = 1− yj, z̄ki = 1− zki

(21)
m∑
j=1

ȳj =
m∑
j=1

(1− yj) = m−
m∑
j=1

yj = m− p

(22)zki +
∑

j:dij≤Dk
i

yj ≥ 1

⇐⇒ zki +
∑

j:dij≤Dk
i

(1− ȳj) ≥ 1

⇐⇒ zki + |Dk
i | −

∑
j:dij≤Dk

i

ȳj ≥ 1

⇐⇒ zki −
∑

j:dij≤Dk
i

ȳj ≥ 1− |Dk
i |

⇐⇒
∑

j:dij≤Dk
i

ȳj − zki ≤ |Dk
i | − 1

(23)zKi
i = 0

⇐⇒ 1− zKi
i = 1

⇐⇒ z̄i
Ki = 1

(24) This follows immediately because by definition yi ∈ {0, 1} ⇒ ȳi ∈ {0, 1}
(25) z̄ki ≥ 0 because by definition zki ∈ {0, 1} ⇒ z̄ki ∈ {0, 1}

We leave it to the reader to determine that D1
i = δi1, that for k > 1, (Dk+1

i −Dk
i ) = δik,

and that zki = yπir . The results follow from examining the definitions of the relevant terms.
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Upon this substitution, we see that the models are nearly identical, with the exception being
the extra constraint (23) in CF’.

3.2 The Elloumi formulation

The formulation that Elloumi develops is nearly identical to CF, except that constraint (16)
is separated into two distinct contraints based upon a recursive definition of z. Notice how
this effects the summation in each of the relevant constraints: in CF, constraint (16) sums
over all nodes within distance k or less, while in EF, constraints (28) and (29) sum over
only those nodes at the exact distance of k. EF effectively adds another set of constraints
in order to make the constraints smaller and easier to manipulate. EF uses the exact same
notation as CF; the following recursive statement is manipulation not definition.

zki =
∏
j∈V k

i

(1− yj), for i = 1, 2, ..., n; k = 1, 2, ..., Ki

which implies the following recursive definition:

z1i =
∏

j:dij=D1
i

(1− yj), for i = 1, ..., n

zki = zk−1i

∏
j:dij=Dk

i

(1− yj), for i = 1, ..., n; k = 2, 3, ..., Ki.

This motivates the formulation of the Elloumi model:

The Elloumi formulation (EF)

min Z(z, y) =
n∑
i=1

{
D1
i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

}
(26)

s.t.
m∑
j=1

yj = p (27)

z1i +
∑

j:dij=D1
i

yj ≥ 1 for i = 1, 2, ..., n (28)

zki +
∑

j:dij=Dk
i

yj ≥ zk−1i for i = 1, 2, ..., n; k = 1, 2, ..., Ki (29)

zKi
i = 0 for i = 1, 2, ..., n (30)

zki ≥ 0 for i = 1, 2, ..., n; k = 1, 2, ..., Ki (31)

yj ∈ {0, 1} for j = 1, 2, ...,m (32)

As mentioned previously, the only difference between CF and EF is that constraint (16) in
CF is broken up into constraints (28) and (29) in EF. Another way of conceptualizing this is
to consider the sets over which the summations occur. CF has a filled ring surrounding the
relevant zj containing entries of distance Dk

i or less; while EF has a hollow ring surrounding
the relevant zj, only containing entries precisely Dk

i away.
Elloumi goes on to show that if CF and EF are the LP-relaxations of CF and EF
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respectively, then

1. The feasible solution set of EF is included in the feasible solution set of CF, with the
inclusion possibly being strict.

2. CF and EF have the same optimal values.

3. Given an optimal solution to one of CF or EF, we can deduce an optimal solution of
the other with the same optimal value.

So the Elloumi model is at least equivalent to the Cornuejols model, with the possible
advantage of having a tighter feasible region.

3.3 Reductions in the Elloumi formulation

Elloumi offers three reduction steps inherent in the definition of the z variables, though one
is trivial, so only two are presented.

1. For any client i, if V 1
i is a singleton ya then z1i = 1− ya for any feasible solution. Then

the variable z1i can be replaced by 1 − ya, and the constraint defining z1i , z
1
i + ya ≥ 1

may be eliminated. In application, for a client i, if there is only one site the closest
distance away, then we may replace the z variable representing that site with 1 − ya
and eliminate its corresponding constraint.

2. For any two clients i and i′, if V k
i = V k′

i′ for some k, k′, then zki = zk
′

i′ for any feasible
solution. We may then replace the variable zk

′

i′ with zki , and eliminate the constraint
defining zk

′

i′ : z
k′

i′ +
∑

j:di′j=Dk′
i′
yj ≥ zk

′−1
i′ . That is, if given two clients i and i′, if the

sets of the k and k′ respective closest facility sites are identical, then we may replace
zk
′

i′ with zki and eliminate the constraint representing zk
′

i′ . Notice that this reduction is
identical to the combining of terms that occurs in AF.

3.4 A computational example

We use the same scenario and cost matrix as with the AlBdaiwi model to illustrate the
similarities and differences between the differrent formulations.

Consider a p-median problem with m = 5 potential facility sites, n = 5 clients and
p = 2 facilities to place, with cost matrix

C =


5 7 3 9 12
4 2 1 4 7
11 7 4 8 10
7 5 9 2 2
10 6 9 3 4

 .

Let each column represent a facility Fi and each row a client Ci for i = 1, 2, ..., 5.
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V 1
1 = {F3} V 2

1 = {F1, F3} V 3
1 = {F1, F3, F4} V 4

1 = {F1, F2, F3, F4} V 5
1 = V Ki

i

V 1
2 = {F3} V 2

2 = {F2, F3} V 3
2 = {F2, F3, F4} V 4

2 = {F1, F2, F3, F4} V 5
2 = V Ki

i

V 1
3 = {F3} V 2

3 = {F3, F4} V 3
3 = {F2, F3, F4} V 4

3 = {F2, F3, F4, F5} V 5
3 = V Ki

i

V 1
4 = {F4, F5} V 2

4 = {F2, F4, F5} V 4
3 = {F2, F3, F4, F5} V 4

4 = V Ki
i

V 1
5 = {F4} V 2

5 = {F4, F5} V 5
3 = {F2, F4, F5} V 4

5 = {F2, F3, F4, F5} V 5
5 = V Ki

i

Table 1: Neighborhoods of the computational example

We can now formulate the objective function of the opimization problem:

Z(z, y) = 3 + 2z11 + 2z21 + 2z31 + 3z41
+ 1 + 1z12 + 2z22 + 3z32
+ 4 + 3z13 + 1z23 + 2z33 + 1z43
+ 2 + 3z14 + 2z24 + 2z34
+ 3 + 1z15 + 2z25 + 3z35 + 1z45

= 13 + 2z11 + 2z21 + 2z31 + 3z41 + 1z12 + 2z22 + 3z32 + 3z13 + 1z23
+ 2z33 + 1z43 + 3z14 + 2z24 + 2z34 + 1z15 + 2z25 + 3z35 + 1z45

Then the complete model is:

min Z(z, y) = 13 + 2z11 + 2z21 + 2z31 + 3z41 + 1z12 + 2z22 + 3z32 + 3z13 + 1z23
+ 2z33 + 1z43 + 3z14 + 2z24 + 2z34 + 1z15 + 2z25 + 3z35 + 1z45

s.t.
5∑
j=1

yj = 2

z1i +
∑

j:dij=D1
i

yj ≥ 1 for i = 1, 2, ..., 5

zki +
∑

j:dij=Dk
i

yj ≥ zk−1i for i = 1, 2, ..., 5; k = 1, 2, ..., Ki

zKi
i = 0 for i = 1, 2, ..., 5

zki ≥ 0 for i = 1, 2, ..., 5; k = 1, 2, ..., Ki

yj ∈ {0, 1} for j = 1, 2, ..., 5

4 A pseudo-Boolean representation of the Elloumi model

Having discovered that the pseudo-Boolean formulation developed by AlBdaiwi et al. is
functionally equivalent to the formulation presented by Cornuejols et al., we are motivated
to present a pseudo-Boolean formulation of the model presented by Elloumi. In the paper
introducing Elloumi’s model, EF ran significantly faster than both CF and RF solving a
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variety of benchmark p-median problems from ORLIB (Beasley 1990) and rw (Resende and
Werneck 2004). This leads us to believe that a pseudo-Boolean formulation of EF will run
faster than CF’s pseudo-Boolean counterpart, AF.

We set about converting the pseudo-Boolean AF into a pseudo-Boolean formulation
following the same set of constraints. We begin with the AlBdaiwi formulation and make
the substitution xj = (1 − yj). Remember that yj in AF is ȳj in all other formulations, so
xj will equal yj outside of AF.

Making this substitution, the original AF

The AlBdaiwi formulation (AF)

min B(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

yπir

}
s.t.

n∑
i=1

yi = n− p∑
i∈Sk

yi − zk ≤ |Sk| − 1 for each Sk corresponding to each zk

yi ∈ {0, 1} for j = 1, 2, ..., n

zk ≥ 0 for each k constructed.

becomes

The altered AlBdaiwi formulation

min B(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

(1− xπir)

}
(33)

s.t.
n∑
j=1

xj = p (34)∑
j∈Sk

xj + zk ≥ 1 for each Sk corresponding to each zk (35)

xj ∈ {0, 1} for j = 1, 2, ...,m (36)

zk ≥ 0 for each k constructed. (37)

Calculations
Constraints (34), (36), and (37), as well as the objective function (33) are identical to
the calculations performed in substituting ȳj for yj in CF’, for (21), (24), (25), and (20)
respectively.
Constraint (35) is simple but not necessarily apparent.∑

j∈Sk

yj − zk ≤ |Sk| − 1

=⇒
∑
j∈Sk

(1− xj)− zk ≤ |Sk| − 1
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=⇒ |Sk| −
∑
j∈Sk

xj − zk ≤ |Sk| − 1

=⇒
∑
j∈Sk

xj + zk ≥ 1

At this point, the altered AF is beginning to resemble EF. All that remains is to con-
vert constraint (35):

∑
j∈Sk

xj + zk ≥ 1 for each Sk corresponding to each zk

We recall the definitions of Sk and Dk
i . In AF, for a multi-part monomial yaybyc... = zk, Sk is

the set of a, b, c, ... corresponding to the indices of the variables making up zk. In application,
Sk represents the t closest sites to a site j where t = |Sk|.
Dk
i is the ordered set of distances of the k closest sites to a site i.

In order to make constraint (35) consistent with the notation of EF, we change our notation
from Sk to Dk

i . We want to preserve the contents of the set, so {j : j ∈ Sk} = {j : dij ≤ Dk
i }.

But in doing this, we also must change zk to zki .
We now can reformulate constraint (35) as∑

j:dij≤Dk
i

xj + zki ≥ 1 for i = 1, 2, ..., n

This essentially gives us the formulation of Cornuejols et al.

The pseudo-Boolean Cornuejols model (PBC)

min Z(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

(1− xπir)

}
(38)

s.t.
m∑
j=1

xj = p (39)∑
j:dij≤Dk

i

xj + zki ≥ 1 for i = 1, 2, ..., n (40)

xj ∈ {0, 1} for j = 1, 2, ...,m (41)

zk ≥ 0 for each k constructed. (42)

By splitting constraint (35) into two new constraints, we now have a pseudo-Boolean
formulation of Elloumi’s model:

The pseudo-Boolean Elloumi model (PBE)

min Z(y) =
n∑
i=1

{
δi1 +

m∑
k=2

δik ·
k−1∏
r=1

(1− xπir)

}
(43)

s.t.
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m∑
j=1

xj = p (44)

z1i +
∑

j:dij=D1
i

xj ≥ 1 for i = 1, 2, ..., n (45)

zki +
∑

j:dij=Dk
i

xj ≥ zk−1i for i = 1, 2, ..., n (46)

xj ∈ {0, 1} for j = 1, 2, ...,m (47)

zk ≥ 0 for each k constructed. (48)

This PBE model essentially uses the pseudo-Boolean objective function of AF and the
constraints of EF or CF. We may also apply our choice of reduction techniques from the two
formulations: while they ultimately end in the same result, one reduction may be preferred
over the other in a given situation. For example, depending on the modeling language, the
AF reductions may be easier because they merely involve polynomial algebra, while the EF
reductions rely on set content comparison. Thus the primary benefit to hybridizing these two
models is the retention of the pseudo-Boolean objective function from AF and the flexibility
of reduction options from both models.

Though the sets of constraints are nearly identical between AF and EF, using the
constraints of EF provides one small advantage compared to AF: constraints (45) and (46)
in the PBE are more integer-friendly than constraint (11). Compare

z1i +
∑

j:dij≤D1
i
xj ≥ 1 for i = 1, 2, ..., n (45)

zki +
∑

j:dij≤Dk
i
xj ≥ zk−1i for i = 1, 2, ..., n (46)

with the AF constraint∑
i∈Sk

yi − zk ≤ |Sk| − 1 for each Sk corresponding to each zk (11)

Revelle (1993) discusses how the formulation of a model affects the nature of its solu-
tion, particularly whether the solution is integer or fractional. He concludes that, generally,
a solution is more likely to be integer if the coefficients of the variables in the constraint set
are -1, 0, or 1. He refers to this property as being integer-friendly In the PBE constraints
(45) and (46), we have each of our variables and our bound taking values of 0 or 1. In the AF
constraint (11), we have the variables taking values of 0 or 1, but the bounding constraint
can take a value up to n − 1 in size. While there may be some unexplored repercussion of
having an unbounded greater-than inequality, what with the lesser-than inequality bounded
below by zero, Revelle’s notion of integer-friendliness makes the PBE or CBE formulation
of the constraints preferable for now.

5 Computational Comparison

For the computational aspect of this paper, we developed models for the AF and PBC
models. We assumed that the PBE model would be faster than the PBC model, so if we can
show that the PBC model is faster than the AF model, we assume that the PBE model is
faster than the AF model as well. Comparing the PBC and AF models is tenuous, as they
are nearly identical with the exception of the PBC model’s integer friendly set of constraints.
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As such, we expect only marginal advantages in run time.
To best isolate the effect that the constraint formulation has on model speed, we refrain

from performing other reductions on these models. Thus the runtimes provided and variables
and constraints eliminated are not lower bounds: the results of the PBC model are intended
solely to be taken in context of comparison, not as a benchmark.

Using Code::Blocks C++ as our modeling language, we have developed algorithms to
perform the reductions appropriate to each formulation and to formulate the AlBdaiwi and
hybrid models. We run our models against several problem datasets from the Beasley OR
library, varying in their sizes and values of p. Preprocessing occurred on a portable PC with
a 2.00 GHz Intel Core 2 Duo processor and 3.00 GB of RAM. The models were run on a
non-portable PC with a 2.13 GHz Intel Core 2 Duo processor and 2.00 GB of RAM. The
results are solved in Xpress IVE (FICO), courtesy of the UCSB Department of Geography.
We then compare the reduction efficiency, preprocessing times, and solving times of each
model.

5.1 Discussion of Models

In this section, we focus exclusively on AlBdaiwi et al.’s pseudo-Boolean mode and the
pseudo-Boolean Cornuejols model developed in this paper. The classic model developed by
Revelle has been thoroughly tested already, and in their respective papers, AlBdaiwi et al.
and Elloumi both show their respective models to be faster in regard to certain benchmark
problems. Similarly, Elloumi shows her model to be more efficient than that of Cornuejols
et al. For these reasons, we choose to focus on AF and PBC, as we assume that the PBE is
faster than the PBC model.

In running these models, we seek to investigate the effects of the PBE model’s integer
friendly constraints, as opposed to the non-integer friendly constraints of the AF model. For
this reason, we refrain from including any of the aforementioned reduction methods in order
to isolate the effects of the different constraint formulations on the model run time.

5.2 Computational Results

The Beasley library from which we have drawn these problems has n=m; that is, the problem
treats each node as a potential facility site and a potential client. Thus, the problem size,
number of demand sites, and number of facility sites are all the same for the pmed problems.
Similarly, notice that the number of entries in the cost matrix is equal to n2.

The percent variable reduction is given by (n2−remaining variables)/n2. Notice that
since the AF and PBE models use the same objective function, the number of remaining
variables and variable reduction are the same for each model. The preprocessing and run
times are rounded to the nearest hundredth of a second.

In the AF model, we see that preprocessing time increases exponentially as n increases.
The run times for this model fluctuate broadly, with little reason immediately apparent. We
attribute it to differences in the complexity of the problem datasets, as the problems from
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AF AF PBC PBC
Size Var. Var. Preproc. Run time Preproc. Run time
(n) p after red. (%) (sec) (sec) (sec) (sec)

pmed1 100 5 7407 25.93 3.19 1.45 3.14 1.37
pmed2 100 10 7633 23.67 3.38 3.26 3.36 2.05
pmed3 100 10 7472 25.28 3.33 3.36 3.34 2.70
pmed4 100 20 7472 25.28 3.44 1.34 3.40 1.39
pmed5 100 33 7226 27.74 3.30 1.16 3.31 1.16
pmed6 200 5 16508 58.73 26.57 28.77 26.48 28.48
pmed7 200 10 16302 59.25 27.15 6.89 26.18 6.73
pmed8 200 20 16868 57.83 27.22 5.82 27.96 5.79
pmed9 200 40 16274 59.32 26.66 5.32 27.36 5.94
pmed10 200 67 14471 63.82 25.63 4.38 26.03 4.61
pmed11 300 5 20195 77.56 94.68 24.43 91.34 16.63
pmed12 300 10 21083 76.57 93.27 45.91 90.33 26.56
pmed13 300 30 21281 76.35 95.75 46.04 92.73 11.81
pmed14 300 60 22091 75.45 96.02 11.31 93.92 11.06
pmed15 300 100 19882 77.91 91.66 7.97 90.33 7.71
pmed16 400 5 23460 85.33 235.08 70.01 238.10 66.94
pmed17 400 10 22784 85.76 233.175 69.89 232.00 18.44
pmed18 400 40 24984 84.39 240.44 19.78 237.14 13.88
pmed19 400 80 23336 85.42 235.71 14.18 231.87 14.77
pmed20 400 133 24630 84.61 240.00 14.91 235.96 14.21
pmed21 500 5 25648 89.74 834.07 28.58 496.19 26.04
pmed22 500 10 27800 88.89 240.00 24.35 502.95 23.60
pmed23 500 50 27340 89.06 498.92 22.03 493.54 21.85
pmed24 500 100 26740 89.30 498.75 20.52 494.12 20.36
pmed25 500 167 27231 89.11 497.32 21.74 491.37 20.842

Table 2: Reductions of monomials of the objective function as well as preprocessing and run
times of the AF and PBC models for benchmark problems
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the Beasley library are all distinct. That is, they do not use the same dataset for each n and
vary p, but rather use a different dataset for each instance.

In the PBE model,the preprocessing times are comparable to the AF model. There
are a few discrepancies either way, as with pmed21 and pmed22, but we attribute these to
anomalies of the computer. Like the AF model, the run time for the PBE model does
not correlate smoothly with the size of the dataset. Again, we attribute these discrepancies
to the irregularity of the Beasley datasets. Comparing the run time results to the AF model,
we see that they are just slightly faster for n up to 500. While we might normally dismiss
this as a computational anamoly, its consistency makes an argument for it.

In particular, we see that in all but three of the instances, the PBC model runs faster
than the AF model. In some cases, such as pmed13 and pmed17, PBC runs over three times
as fast as AF. Averaging the difference in times for each of these simulations, PBC was over
5 seconds faster than AF. Taking the average with differences greater than three seconds
removed, we see that PBC ran .48 seconds faster than AF. As we had predicted initially, this
indicates that the integer-friendly constraint (45) of the PBC model has a slight advantage
over the normal constraint (11) of the AF model, at least in the solving software Xpress IVE.

On the whole, the PBE model performed better than the AF model in both prepro-
cessing and run time. The advantage in preprocessing is unexpected and unattributed. The
advantage in run time is marginal, but present. The models could be run on larger values
of n to see if the advantage held by the PBC model widens as n increases.

6 Conclusion

This paper begins with an overview of the p-median problem, its history, and the classic
formulation by Revelle and Swain (1970). It then gives a brief explanation of the devel-
opment of the respective models developed by AlBdaiwi et al. and Elloumi, presents the
models, explains the reduction techniques inherent in each model, and provides a worked
example of a sample problem for each. We then set about converting Elloumi’s model into
a pseudo-Boolean form.

In this conversion process, we determine that the model developed by Cornuejols et
al. (1980), a predecessor of Elloumi’s model, is functionally equivalent to AlBdaiwi et al.’s
model. Upon a particular variable substitution and ignoring extraneous constraints, we can
see that the two models are equivalent.

This motivated us to develop a pseudo-Boolean formulation of Elloumi’s model. In
Elloumi’s paper featuring her model, that model had proved more efficient than the model
developed by Cornuejols et al. This led to the actual development of models for the AlB-
daiwi et al. and pseudo-Boolean Cornuejols formulations, operating under the assumption
that the pseudo-Boolean Elloumi model would outperform the PBC model, and hence the
AF model.

In formulating the hybrid model, we essentially ended with the objective function from
the AlBdaiwi et al. model and the constraints of the Cornuejols model This allowed us
some modicum of flexibility in choosing which reduction technique to choose: the algebraic
combination of the objective function, or the neighborhood comparison of the constraints.

In our computational analysis, we compared the AF and the PBC models using bench-
mark problems of various sizes from the Beasley OR library. Since both models use identical
objective functions, the variable reduction was the same. And since the constraints are
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functionally identical, the constraint reductions were also close to identical. Our main ques-
tion in comparing the two models was whether the integer-friendly constraints of the PBC
model would provide a significant computational advantage over the non-integer friendly
constraints of the AF model. The PBC model already has the advantage of flexibility in its
constraints; that it may adopt those of either the AlBdaiwi or the Cornuejols model, and
likewise for its objective function. For this comparison, we chose to adapt the constraints of
the Cornuejols model to the objective function of the AlBdaiwi model in order to provide a
pseudo-Boolean formulation of the Cornuejols model.

The results of the computaiton comparison were mildly conclusive. While the PBC
model had a slightly faster preprocessing speed and run time, the preprocessing speed is
unexpected and unattributed, as the two models have comparable preprocessing algorithms.
Additionally, the run time advantage held by the PBC was only moderate, and over a limited
sampling of sets. Its consistency, however, is encouraging. For now, we conclude that the
PBC model’s integer friendly constraint may have a run time advantage over the AF model,
and propose further tests to verify it.

When running these computational models, we began to face memory and time is-
sues as the problem sizes increased, which is why our largest problem has only n=500 sites.
Different solving software on different computers would likely give different results. Addi-
tionally, the code used in preprocessing was less efficient than it could have been: since the
two algorithms were near identical, the correctness of the result was more important than
the speed of preprocessing.

Additional research might investigate the efficacy of the two reduction methods that
were mentioned in this paper but not included in the computational comparison. While their
end result is essentially the same, the reduction algorithms might work better in different
conditions. If so, it would be useful to determine what these conditions are. Additionally,
as suggested by AlBdaiwi et al., a potentially worthwhile course of study would be to in-
vestigate the efficacy of the pseudo-Boolean formulation of the p-median problem. Finally,
it should remain productive to apply different formulation methods to problems in related
fields. As Elloumi did with the simple plant location problem that Cornuejols et al. had
originally developed, taking an existing formulation in a related field and adapting it to a
current problem can lead to new applications.
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