
Graph Algorithms on A transpose A.

Benjamin Chang
John Gilbert, Advisor

June 2, 2016

Abstract

There are strong correspondences between matrices and graphs. Of impor-
tance to this paper are adjacency matrices and incidence matrices. Multiply-
ing such a matrix by its transpose has many applications in multiple domains
including machine learning, quantum chemistry, text similarity, databases,
numerical linear algebra, and graph clustering.

The purpose of this paper is to present, compare and analyze efficient
original algorithms that compute properties of ATA from A while avoiding
the expensive storage and computation of the matrix ATA and provide re-
sources for further reading. These algorithms, designed for sparse matrices,
include triangle counting, finding connected components, distance between
vertices, vertex degrees, and maximally independent sets.

1

Contents

1 Introduction and Motivations 4
1.1 Definitions . 4
1.2 Applications . 5
1.3 Compressed Column/Row Storage 6
1.4 Goals . 6

2 Connected Components and Distance 7
2.1 Adjacency in ATA . 7
2.2 Connected Components . 8

2.2.1 Connectedness in ATA 8
2.2.2 Algorithm Description 8

2.3 Results and Comparisons . 10
2.3.1 Algorithm Complexity 10
2.3.2 Advantages, Disadvantages, and Results 10

2.4 Distance . 11

3 Independent Sets 13
3.1 Maximally Independent Set Criterion 13
3.2 Maximally Independent Set Algorithm 14

4 Triangle Counting 16
4.1 Counting Triangles with Product-Weight 17
4.2 Counting Triangles with Sum-Weight 22
4.3 Sum of a Matrix Product . 25
4.4 Weighted Triangle Count Algorithms 26
4.5 Approximating Triangle Count 28

4.5.1 Results . 29
4.5.2 Advantages and Disadvantages 32

2

Chapter 1

Introduction and Motivations

1.1 Definitions

Definition 1. A bipartite graph G = (U, V,E) has vertex sets U and V and
edges E ⊆ U × V . Define m = |U | and n = |V |. The adjacency matrix
A ∈ Mm×n has rows representing vertices of U and columns representing
vertices of V and is defined by

Ai,j =

{
1, i ∈ U adjacent to j ∈ V
0, otherwise

We deal only with finite sets of vertices and edges. Each vertex and edge
is assumed to be numbered, and a vertex or edge’s number is used inter-
changeably with the vertex or edge itself. The vertices in U are numbered
1, . . . ,m and vertices in V are numbered 1, . . . , n. Since a graph is uniquely
identified by its adjacency matrix, we will use the two interchangeably.

In this work, we are interested in algorithms concerning ATA where A is
the adjacency matrix of some sparse bipartite graph. Since ATA is square
and symmetric, we can represent ATA as a undirected weighted graph.

3

1.2 Applications

Matrices and graphs of the form ATA appear in many contexts.

Definition 2. If every edge e is between two vertices i and j such that i < j,
then an oriented incidence matrix, M , of an undirected graph G = (V,E) has
dimension |E| × |V | with rows representing edges and columns representing
vertices and is defined by

Me,v =

1, v = i

−1, v = j

0, otherwise

The matrix MTM , where M is the oriented incidence matrix of a graph
G, is the Laplacian of G. The Laplacian has many practical purposes includ-
ing computing the number of spanning trees, approximating max flow, and
image processing.

Furthermore, if incidence matrices are a way to store sparse matrices and
MTM , the Laplacian, is strongly related to the adjacency matrix, another
way to store sparse matrices. Computing properties about MTM can allows
us to discover properties about the adjacency matrix from the incidence
matrix.

4

Definition 3. The Gram matrix, R, of a set of vectors v1, . . . , vn is an n×n
matrix where

Ri,j = vi · vj
Equivalently, if V is the matrix with column vectors v1, . . . , vn, then

R = V TV

Gram matrices have applications in machine learning, quantum chem-
istry, and text similarity.

In addition to Laplacian and Gram matrices, the matrix ATA appears in
triangle counting, finding Erdős numbers, databases, and more.

1.3 Compressed Column/Row Storage

In the algorithms presented in this paper, we will use Compressed Column
Storage (CCS) or Compressed Row Storage (CRS) to store the sparse matrix
A. CCS consists of three arrays, an array of indices of size |V |+ 1 called the
RI, an array of row values of size |nnz(A)| called R, and an array of element
values of size |nnz(A)| called V . To find all the elements in column c, you
iterate over all RI(c) ≤ i < RI(c + 1) Then there is a nonzero row R(i)
in column c where AR(i),c = V (i). CRS works in the same fashion except
compressing by rows instead of columns.

CCS allows fast access of A by its columns and CRS allows fast access
of A by its rows. In CRS we can efficiently find the neighbors of vertices
in U and in CCS we can efficiently find neighbors of vertices in V . More
information can be found in [11].

1.4 Goals

This paper presents several algorithms computing information about ATA
from the matrix A that requires less time or space than first computing
ATA. Calculating the matrix ATA exactly requires O(

∑n
i=1 nnz(A(i, :))2)

time. The amount of additional space required is O(nnz(ATA)). Even if
A is very sparse, ATA can be very dense and even storing the matrix can
become an issue.

5

Chapter 2

Connected Components and
Distance

In this chapter we explore the concepts of adjacency, connectedness and dis-
tance in the graph ATA and how they relate to the graph A.

2.1 Adjacency in ATA

Here we introduce a criterion in Theorem 1 for adjacency in ATA which will
be useful throughout every chapter.

Theorem 1. If A is an adjacency matrix, then vertices vi, vj ∈ V are adja-
cent in ATA if and only if they share a common neighbor in A.

Proof. By definition of matrix multiplication,

(ATA)i,j =
m∑
k=1

Ai,kAk,j

Because A is an adjacency matrix, each element is either 0 or 1.

(ATA)i,j = 0 ⇐⇒ Ai,kAk,j = 0 for all k

.
(ATA)(i, j) 6= 0 ⇐⇒ Ai,kAk,j 6= 0 for some k

6

vi and vj are adjacent in ATA ⇐⇒ (ATA)i,j 6= 0. Furthermore, they share
a common neighbor if and only if Ai,kAk, j is nonzero for some k. So, vi and
vj are adjacent if and only if they share a common neighbor in A.

2.2 Connected Components

2.2.1 Connectedness in ATA

Lemma 1. There is a path between two vertices in ATA if and only if there
is path between them in A

Proof.

Theorem 2. Two vertices vi, vj ∈ V are connected in ATA if and only if
they are connected in A.

Proof. =⇒) Assume vi and vj are connected in ATA. Then there is a walk
from vi to vj in ATA. Each consecutive pair of vertices in the path are adja-
cent in ATA so they share a mutual neighbor in A. So each pair of vertices
are connected in A since there is a walk of length 2 between them. Since
connectedness is transitive, vi and vj are connected.

⇐=) Assume vi and vj are connected in A. Then there is a walk from
vi to vj in ATA. Since A is bipartite, the vertices alternate between vertices
in V and U . Consecutive vertices in V share a mutual neighbor in U so they
must be adjacent in ATA. Therefore consecutive vertices in V are connected
in ATA. Since connectedness is transitive, all the vertices in V are connected
in ATA.

2.2.2 Algorithm Description

Since vertices are connected in ATA if and only if they are connected in A,
we can apply traditional methods of finding connected components such as
a breadth first search. However, can we do any better? Here we introduce
a different algorithm and compare it to doing a breadth first search on A to
find the connected components.

We know that vertices in ATA are adjacent if they share a neighbor in V .
This shared neighbor must be a vertex in U . Therefore, for every u ∈ U , the

7

neighbors of u must all be adjacent. We can use this fact to create a more
efficient algorithm. In this algorithm we use a union find data structure.

Algorithm 1 Connected Components - Union Find

Input: Graph G = (U, V,E)
Output: Every connected component gets assigned a representative. Each
vertex in U is labeled with the representative of its connected component.

1: procedure findConnComps Union Find(Graph G = (U, V,E))
2: for all v ∈ V do
3: make set(v)

4: for all u ∈ U do
5: if u has at least one neighbor then
6: Let vu be a neighbor of u.
7: for all v adjacent to u do
8: link(v, vu)

9: Create a set of representatives for each vertex.
10: for all v ∈ V do
11: representative(v) = find(v)

Now we want to prove that this algorithm is correct.

Proof. Since this algorithm links all vertices that are adjacent, all adjacent
vertices have the same representative.

First we show that vertices in the same connected component have the
same representative. If a connected component consists of a single vertex,
then it will never be linked to anything and it will be its own representative.
If two vertices are in the same connected component in ATA, then there
exists a walk between them. Since consecutive vertices in the walk are adja-
cent, they must have the same representative. Therefore every vertex in the
walk has the same representative, in particular the start and end. Every two
vertices in the same connected component have the same representative. So
all vertices in the same connected component have the same representative.

Now we show that vertices in different connected components have dif-
ferent representatives. Since only adjacent vertices are linked, if two vertices
have the same representative, there must be a walk between them. Therefore

8

they must be in the same connected component.

Vertices are in the same connected component if and only if they have
the same representative.

2.3 Results and Comparisons

2.3.1 Algorithm Complexity

The runtime of the Union Find algorithm is approximately O(|V |+|E|+|U |).
To be precise, the runtime is O(|V | · α(|V |) + |U |) where

α−1(x) = A(x, x)

and A is the Ackermann function. The function link() is called once for ev-
ery element in every column except one element in each column. So link() is
called O(|E|) times. Then the second loop takes O(|E|+|U |) time. The find()
function takes amortized α(|V |) time so the final loop takes O(|V |α(|V |))
time. Together they take O(|V | · α(|V |) + |E| + |U |) time. The algorithm
takes addition space O(|V |) since the UnionFind and the solution both take
linear space.

In comparison, a standard breadth first search requires O(|V |+ |E|+ |U |)
and O(|V |) space to store the answer. So they have similar asymptotic run-
time.

2.3.2 Advantages, Disadvantages, and Results

Some disadvantages of the union-find algorithm is that it technically has non-
linear runtime and the matrix A must be stored in a format which can quickly
access all elements in a row such as CRS. Storage formats like CCS would
cause the algorithm to run significantly slower. However, a standard breadth
first search over A requires the matrix to be easily accessed across rows and
columns to be efficient. This is an even stricter requirement. Therefore, while
the union-find algorithm is less restrictive on the type of data structure re-
quired, as we will see below, it is slower in every test case.

9

Run times were computed by averaging over 100 trials.

2.4 Distance

Definition 4. The distance between two vertices is the length of the shortest
path between them or ∞ otherwise. Let dATA(v1, v2) denote the distance
between two vertices in ATA. Let dA(w1, w2) denote the distance between two
vertices in A.

Theorem 3. The distance between two connected vertices vi and vj in ATA

10

is exactly half the distance between the vertices in A. That is,

dATA(vi, vj) =
1

2
dA(vi, vj)

Proof. Note that since A is bipartite and vi, vj ∈ V , then the distance be-
tween them in A must be even. Since the vertices are connected, they are
connected in both A and ATA. So both distances must be finite.

First we want to show that dATA(vi, vj) ≤ 1
2
dA(vi, vj).There must exist a

path of length dA(vi, vj) between vi and vj in A. Since this graph is bipartite,
it alternates between vertices in V and vertices in U . Each consecutive pair
of vertices in V must share a neighbor in A. Therefore, by theorem 1, they
are adjacent in ATA. So they form a path of length 1

2
dA(vi, vj) in ATA since

half the vertices have been removed. Therefore,

dATA(vi, vj) ≤
1

2
dA(vi, vj)

Next we want to show that dATA(vi, vj) ≥ 1
2
dA(vi, v+j). There must be a

path in ATA between vi and vj of length dATA(vi, vj). Call this path v1, . . . vk
where v1 = vi and vk = vj. Each consecutive pair of vertices must be adjacent
in ATA by definition of path. Since they are adjacent they must share mutual
neighbors in A by theorem 1. So there exists some u1 . . . uk−1 such that
v1u1v2u2 . . . vk−1uk−1vk is a walk in A. This walk is length 2dATA(vi, vj).
Therefore

2dATA(vi, vj) ≥ dA(vi, vj)

dATA(vi, vj) ≥
1

2
dA(vi, vj)

Therefore,

dATA(vi, vj) =
1

2
dA(vi, vj)

This means that traditional methods for finding distance in A like a
breadth first search can be applied to find distance in ATA. This requires
O(|V | + |U |) space and O(|V | + |U |) time, significantly less than the time
required to compute ATA alone.

11

Chapter 3

Independent Sets

Definition 5. An independent set in a graph is a set of vertices such that
no two vertices are adjacent. The set is maximally independent if it is
not the strict subset of any other independent set.

In this chapter we will modify the standard greedy maximally indepen-
dent set algorithm to work for independent sets of ATA. A maximally inde-
pendent set can be found greedily by iterating over all vertices and adding
vertices that maintain the independence of the independent set. To verify
independence, you can check to see if the new vertex is adjacent to any vertex
in the independent set. While this method can be used to find an indepen-
dent set in ATA, it requires checking adjacency in ATA which is expensive
using only A. In this chapter, we derive an alternative criterion for inde-
pendence in ATA which is more easily verified and be used to implement a
greedy algorithm.

3.1 Maximally Independent Set Criterion

Theorem 4. A set S ⊂ V is independent in ATA if and only if no two
vertices in S share a neighbor in A.

Proof. A set S is independent in ATA, by definition, if and only if no two
vertices are adjacent. Two vertices are adjacent precisely when they share a
neighbor in A. So S ⊂ V is independent in ATA if and only if no two vertices
in S share a neighbor in A.

12

Corollary 4.1. A set S ⊂ V is independent in ATA if and only if each
vertex in U is adjacent to at most one vertex in S.

Proof. =⇒) Let S ⊂ V be independent. Then from Theorem 4, no two ver-
tices in S share a neighbor in A. Since no two vertices in S share a neighbor
in A, no vertex in U can be adjacent to two vertices in S otherwise the two
vertices in S would share a neighbor. So each vertex in U is adjacent to at
most one vertex in S.

⇐=) Assume S ⊂ V such that each vertex in U is adjacent to at most
one vertex in V . We know that each vertex in S can only have neighbors
in U since A is bipartite and S is a subset of V . Then vertices in S have
no shared neighbors because no vertex in U is adjacent to two vertices in S.
Therefore by Theorem 4, S is independent.

3.2 Maximally Independent Set Algorithm

Using Corollary 4.1, Algorithm 2 finds maximally independent sets by iter-
atively adding vertices to S while maintaining the constraint that no two
vertices in U can be adjacent to the same vertex in S.

Algorithm 2 Maximally independent set

Input: Graph A = (U, V,E)
Output: Set S ⊂ V a maximally independent set.

1: procedure maximallyIndependentSet(Graph A = (U, V,E))
2: Let S = ∅.
3: for v ∈ V do
4: if v is unmarked and has no marked neighbors then
5: Mark v and all its neighbors.
6: Add v to S.
7: return S

In this algorithm, a vertex v ∈ V is marked if is in S. A vertex u ∈ U
becomes marked if one of its neighbors is in S. Before we add a vertex v
to S, we check if any of its neighbors is marked. If any of its neighbors are
marked, then we cannot add v to S because then that neighbor would be
adjacent to two vertices in S. So we only add v to S if all its neighbors

13

are unmarked. This maintains the independence criterion of Corollary 4.1.
at each step. Furthermore, after the algorithm finishes running, the set S
is maximally independent, because if any vertex not in S would violate the
independence of S if added.

This algorithm takes O(|E| + |V |) time since we are looping over ver-
tices in V and for each vertex we are traversing over its edges to check its
neighbors. The algorithm requires O(|V |+ |U |) additional space to store the
output S and to mark the vertices.

14

Chapter 4

Triangle Counting

Triangle counting in graphs is used as a subroutine for computing clustering
coefficients or measure the likeness that neighbors are connected. In this
chapter we explore ways to extend to idea of triangle counting for ATA to
be faster to compute but potentially provide similar utility or function.

Recall that we defined m = |U | and n = |V |. Furthermore, each vertex
is assigned a number from 1 to m or 1 to n.

Definition 6. A triangle in the graph ATA is a cycle in ATA of length 3.

Instead of counting the number of triangles, we compute a weighted count
of the triangles. There are two types of weights presented here which we
can compute efficiently. The two types are product-weight and sum-weight
defined below. Both weights are based on the edge weights of the triangles
in ATA. The product-weight weights each triangle by the product of its
edge weights. The sum-weight weights each triangle by the sum of its edge
weights.

Definition 7. Given a triangle in ATA with vertices a, b, c ∈ V , the product-
weight of the triangle is the product of its edges, (ATA)a,b·(ATA)b,c·(ATA)c,a.
The sum-weight of the triangle is the sum of its edges, (ATA)a,b+(ATA)b,c+
(ATA)c,a.

In order to count triangles efficiently using their edge weights, we have to
first understand what the edge weights mean.

Lemma 2. Given two vertices a, b ∈ V . (ATA)a,b is the number of mutual
neighbors between a and b in A.

15

Proof. By definition of matrix multiplication and transpose,

(ATA)a,b =
m∑
i=1

Aa,i · Ab,i

The product Aa,i ·Ab,i is equal to 1 if i is adjacent to both a and b. Otherwise
the product is 0. So (ATA)a,b counts the number of mutual neighbors to a
and b.

4.1 Counting Triangles with Product-Weight

Consider the following triangle a, b, c in ATA with edge weights as shown.

This triangle should contribute 4× 6× 2 = 48 to the total triangle count
with product-weight. From Lemma 2, we know that there are exactly two
vertices u1 and u2 in U that are mutual neighbors to both b and c in A.

Figure 4.1: Black lines are edges in ATA and red dotted lines are edges in A.

16

This gives us an equivalent way to contribute 48 to the total sum. For
both u1 and u2 we add 4× 6 to the total sum. Then to get the total triangle
count with multiplicity we can count shapes of the following form.

Figure 4.2: Black lines are edges in ATA and red dotted lines are edges in A.

Each of these shapes in Figure 4.2 contributes (ATA)a,b · (ATA)a,c to the
total triangle count.

Figure 4.3: Black lines are edges in ATA and red dotted lines are edges in A.

Fix a ∈ V and u ∈ U . Then consider all b ∈ V such that b 6= a and there
are edges from a to b in ATA and from b to u in A as shown in the left of
Figure 4.3. We can call these vertices {b1, . . . , bn}.

17

Figure 4.4: Black lines are edges in ATA and red dotted lines are edges in A.

Then any a, bi, bj where i 6= j forms a triangle in ATA . This is because
there is an edge in ATA between any bi and bj because they both share at
least one mutual neighbor in A, namely u. To compute the total amount
that these {bi} contribute to the total sum with a and u fixed, we add the
product of any two edges from a to the {bi} because any two of the {bi} will
form one of the shapes from Figure 4.2 with a. This is equivalent to adding∑

1≤i<j≤n

(ATA)a,bi · (ATA)a,bj

In the Figure 4.4 this, would be adding 5(4) + 5(6) + 5(7) + 4(6) + 4(7) + 6(7)
to the total count. Another way to add the same amount is to add 1

2
((5 +

4 + 6 + 7)2− (52 + 42 + 62 + 72)). When we distribute (5 + 4 + 6 + 7)2 we get
all pairs of products of the addends. But we want to remove the cases where
we multiply the same two numbers. So we subtract the square of each term.
Then we divide by two because 5(4) and 4(5), which represent the same pair,
are both included. So this gives us

1

2

(n∑
i=1

(ATA)a,bi

)2

−
n∑

i=1

(ATA)2a,bi

18

If we define the matrix B to be ATA except with the diaganol equal to 0.
Then (

n∑
i=1

(ATA)a,bi

)2

= (AB)∗2u,a

and
n∑

i=1

(ATA)2a,bi = (A∗2B∗2)u,a = (AB)∗2u,a

where M∗2 denotes element-wise squaring of entries in a matrix M . Multi-
plying by A on the left of B elects the bi. So the total contribution of Figure
4.4 is given by

1

2

[
(AB)∗2u,a − (AB∗2)u,a

]
Summing over all choices of a ∈ V and u ∈ U gives us 3 times the number
of triangles with product-weight, because for any triangle there are three
vertices which can be chosen as a so the triangle is included 3 times in
the count. If we change B further to consist of only the lower triangular
elements, then there are only edges from lower indexed vertices to higher
indexed vertices. This eliminates the triple counting and gives us Theorem
5.

Theorem 5. Define B ∈ Mn×n to be the strictly lower triangular part of
ATA,

Bi,j =

{
0, for i ≤ j

(ATA)i,j, for i > j

The total number of triangles with product-weight is given by

sum with product-weight =
1

2
sum((AB)∗2)− 1

2
sum(AB∗2)

where M∗2 denotes squaring every element in the matrix M .

Proof. Now we provide a more rigorous algebraic proof. Because B is the

19

strictly lower triangular, Bb,a ·Bc,a ·Bc,b can only be non-zero when a < b < c.

sum with product-weight =
∑
a<b<c

(ATA)a,b·(ATA)c,a·(ATA)c,b =
∑

a,b,c∈V

Bb,a·Bc,a·Bc,b

=
∑
b,c

Bc,b

∑
a∈V

Bb,aBc,a

We know that Bc,b is 0 if c ≤ b and (ATA)c,b otherwise.

=
∑
b,c∈V
b<c

(ATA)c,b
∑
a∈V

Bb,aBc,a

Instead of iterating over b < c, we can iterate over all b 6= c and divide by 2.

=
1

2

∑
b,c∈V
b6=c

(ATA)c,b
∑
a∈V

Bb,aBc,a

By definition (ATA)c,b is
∑

u∈U Au,bAu,c.

=
1

2

∑
b,c∈V
b6=c

(∑
u∈U

Au,bAu,c

)∑
a∈V

Bb,aBc,a

=
1

2

∑
a,b,c∈V
u∈U
b6=c

Bb,aBc,aAu,bAu,c

=
1

2

∑
u∈U
a∈V

∑
b∈V

Au,bBb,a

∑
c∈V
c 6=b

Au,cBc,a

In the third sum we sum over c ∈ V, c 6= b. We can instead sum over all
c ∈ V and subtract the case where c = b.

=
1

2

∑
u∈U
a∈V

∑
b∈V

[
Au,bBb,a

(∑
c∈V

Au,cBc,a − Au,bBb,a

)]

20

Then we can distribute the sum inside the braces.

=
1

2

∑
u∈U
a∈V

∑
b∈V

[
Au,bBb,a

(∑
c∈V

Au,cBc,a

)
− (Au,bBb,a)

2

]

=
1

2

∑
u∈U
a∈V

([∑
b∈V

Au,bBb,a

(∑
c∈V

Au,cBc,a

)]
−
∑
b∈V

(Au,bBb,a)
2

)

The term
∑

b∈V (Au,bBb,a)
2 is (A∗2B∗2)u,a. Since A is an adjacency matrix of

0s and 1s, A∗2 is exactly A. Similarly,
∑

c∈V Au,cBc,a = (AB)u,a.

=
1

2

∑
u∈U
a∈V

[∑
b∈v

Au,bBb,a(AB)u,a − (AB∗2)u,a

]

=
1

2

∑
u∈U
a∈V

[
(AB)2u,a − (AB∗2)u,a

]
=

1

2
sum((AB)∗2)− 1

2
sum(AB∗2)

4.2 Counting Triangles with Sum-Weight

This time we want to count the triangles where each triangle is weighted by
the sum of its edge weights. Lets consider the triangle with vertices a, b, c
and edge weights 4, 2, 6.

21

The contribution of this triangle to the total triangle count with sum-weights
is 4 + 2 + 6 = 12. There are 3 choices of a for each triangle. If for every
choice of a, we add the edge weight of the edge opposite of a.

Figure 4.5: Adding edge-weights opposite of each vertex equates to adding
all edge-weights

Lets look further into adding the edge with weight 2. From Lemma 2, we
know that there are u1, u2 ∈ U that are mutual neighbors to b and c.

Figure 4.6: Black lines are edges in ATA and red dotted lines are edges in A.

The for each ui we add 1 to the total triangle count with sum-weight. So
we are actually just counting shapes of this type

22

Figure 4.7: Black lines are edges in ATA and red dotted lines are edges in A.

From here we can see that counting triangles with sum-weight is very
similar to counting triangles with product-weight.

Theorem 6. Define B ∈ Mn×n to be ATA where all the non-zero elements
are 1 and with the diaganol removed,

Bi,j =

{
0, for i = j or ATAi,j = 0

1, for i = j and ATAi,j 6= 0

The total number of triangles with sum-weight is given by

count with sum-weight =
1

2
sum((AB)∗2)− 1

2
sum(AB)

where M∗2 denotes squaring every element in the matrix M .

Proof. For each triangle we want to count the sum of its edge weights. Notice
that for vertices a, b, c ∈ V , Bb,aBc,bBb,c is 1 if and only if a, b, c forms a
triangle. Therefore the following gives the total triangle count with sum-
weight. ∑

a<b<c

((ATA)b,a + (ATA)c,b + (ATA)c,a) · (Bb,aBc,bBc,a)

23

Instead of iterating over a < b < c we can iterate over all a, b, c and divide by 6
because there are 3! permutations of a, b, c and each permutation contributes
the same amount to the total sum.

=
1

6

∑
a,b,c∈V

((ATA)b,a + (ATA)c,b + (ATA)c,a) · (Bb,aBc,bBc,a)

=
1

6

[∑
a,b,c∈V

(ATA)b,a(Bb,aBc,bBc,a) +
∑

a,b,c∈V

(ATA)c,b(Bb,aBc,bBc,a) +
∑

a,b,c∈V

(ATA)c,a(Bb,aBc,bBc,a)

]
Each of the three summations are the same with variable changes.

=
1

2

∑
a,b,c∈V

(ATA)c,b(Bb,aBc,bBc,a)

By construction of B, we know that (ATA)c,bBc,b = (ATA)c,b whenever c 6= b.
When c = b, Bc,b = 0 so we can just remove that case from the summation.

=
1

2

∑
c,b∈V
b6=c

(ATA)b,c
∑
a∈V

Bb,aBc,a

From here, the algebra is exactly the same as in Theorem 5.

=
1

2
sum((AB)∗2)− 1

2
sum(AB∗2)

In this case B is a matrix of only 1s and 0s. Therefore B∗2 = B.

=
1

2
sum((AB)∗2)− 1

2
sum(AB)

4.3 Sum of a Matrix Product

To compute the number of triangles with product-weight or sum-weight,
we need to compute sum(AB∗2). In this section we provide an efficient
O(|E| + n) time and O(1) space algorithm for computing the sum of any
matrix product. Furthermore, ATA is a matrix product where each element
is the weight of an edge. So calculating sum(ATA) gives us the total edge
weights which can be used to get the average edge weight.

24

Theorem 7. Let A ∈Mm×n and B ∈Mm×p. Then

sum(AB) =
n∑

k=1

[(
m∑
i=1

Ai,k

)
·

(
p∑

i=1

Bk,j

)]

Proof. By definition of sum and matrix multiplication,

sum(AB) =
m∑
i=1

p∑
j=1

(AB)i,j =
m∑
i=1

p∑
j=1

n∑
k=1

Ai,kBk,j =
n∑

k=1

p∑
j=1

m∑
i=1

Ai,kBk,j

Since Bk,j is independent of i, we can bring it out of the summation over i.

sum(AB) =
n∑

k=1

[
p∑

j=1

Bk,j

(
m∑
i=1

Ai,k

)]

Since
∑m

i=1Ai,k is independent of j, we can bring it out of the summation
over j.

sum(AB) =
n∑

k=1

[(
m∑
i=1

Ai,k

)
·

(
p∑

i=1

Bk,j

)]

A basic implementation of this theorem requires O(|E|+|V |) time because
each edge is traversed exactly once and the outer loop iterates over n = |V |.

4.4 Weighted Triangle Count Algorithms

In these algorithms we use Matlab notation denote columns and rows of a
matrix. A(i, :) denotes the ith row of A and A(:, j) denotes the jth column.

25

Algorithm 3 Count triangles with product-weight

Input: Adjacency Matrix A
Output: Sum of all triangles’ product-weights.

1: procedure Count triangles prod-weight(Adjacency Matrix A)
2: Let B = strictly lower triangular part of ATA.
3: Let count = 0
4: for 1 ≤ j ≤ n do
5: Let ~b = B(:, j).

6: count = count+ ||A~b||2

7: for 1 ≤ k ≤ m do
8: count = count− sum(A(:, k) · sum(B∗2(k, :))

return count/2.

From Theorem 5, we know that the number of triangles with product
weight is 1

2
sum((AB)∗2)− 1

2
sum(AB). The second loop compute sum(AB)

using theorem 7. The first loop computes sum(AB)∗2 without storing the
matrix (AB)∗2 by computing one column of AB at a time.

The runtime of this algorithm is dependent on the density of B. How-
ever, in the worse case when B is completely dense, the runtime is O(|E||V |+
|U ||V |) because multiplying A and B takes worst case O(|E||V |) time and
the second loop requires O(|U ||V |) time in the worst case.

To count triangles with sum-weight, we can make nice optimizations and
simplifications to decrease the storage requirements and runtime.

Algorithm 4 Count triangles with sum-weight

Input: Adjacency Matrix A
Output: Sum of all triangles’ sum-weights.

1: procedure Count triangles sum-weight(Adjacency Matrix A)
2: Let count = 0
3: for 1 ≤ i ≤ n do
4: Let ~b = B(:, i).

5: Let ~c = A~b.
6: for nonzero x ∈ ~c do
7: count = count+ x(x− 1)

return count/2.

26

Theorem 6 tells use how to count triangles by sum-weight. For each el-
ement x in AB we want to add 1

2
(x2 − x) = 1

2
x(x − 1). Algorithm 4 does

this by computing the columns of AB one at a time and adding x(x− 1) for
each x in the column. Notice here that we only access B by its columns, and
only one column at a time. This means that in Algorithm 4, we only need to
store and compute one column of B at a time. This algorithm has the same
runtime as the previous algorithm, Algorithm 4. However, because we only
need each column of B once and only one at a time, the additional space
required is only O(|V |). So counting triangles with sum-weights requires less
space than computing ATA.

4.5 Approximating Triangle Count

We can use the triangle count with sum-weight and the average edge weight
to approximate the actual number of triangles in ATA.

triangle count× 3× avg edge weight ≈ triangle count with sum-weight

By definition, the edge weights of ATA are the elements of ATA. Since ATA
is a matrix product between AT and A, we can apply Theorem 7 to get the
total sum. Subtracting out the diaganol gives us all edges excluding loops.
Finally, dividing by the number of non-zeros in ATA without the diaganol
gives us the average edge weight. Algorithms such as those by Cohen [12]
predict the structure and number of non-zeros in a matrix product to ap-
proximate the average edge-weight without computing ATA. However, this
method is not used here because we can compute the exact number without
much more effort.

27

Algorithm 5 Approximating Triangle Count

Input: Adjacency Matrix A
Output: Approximate number of triangles in ATA.

1: procedure Approx Triangle Count(Adjacency Matrix A)
2: Let count = 0
3: Let nnzB = 0.
4: for 1 ≤ i ≤ n do
5: Let ~b = B(:, i).

6: nnzB = nnzB + nnz(~b)

7: Let ~c = A~b.
8: for nonzero x ∈ ~c do
9: count = count+ x(x− 1)

10: Let sumWeights = 0
11: for u ∈ U do
12: sumWeights = sumWeights+ [degA(u)]2

13: for v ∈ V do
14: sumWeights = sumWeights− degA(v)

return count/(2 ∗ sumWeights/nnzB).

Algorithm 5 first computes the sum-weighted triangle count as in algo-
rithm 4. Then it computes the average edge weight by first computing the
total edge weight by calculating sum(ATA) using Theorem 7. In this case, it
is equivalent to adding the sum of the degrees of u ∈ U squared. We subtract
the diaganol because we are not interested in loops and divide by the number
of non-zeros in B to get the average edge weight.

4.5.1 Results

Since ATA can be dense even though A is sparse, we store ATA and its
variations as a dense matrix in our implementation. The code is optimized
for worst case behavior that gives the estimation algorithm the most benefit,
when ATA is dense. When ATA is sparse, the estimation algorithm is not
as beneficial and computing the exact number of triangles is feasible. Where
the estimation algorithm is useful is when ATA is not sparse and computing
the number of triangles is infeasible or storing the matrix ATA is too costly.

28

As a comparison, we ran the triangle estimation algorithm, Algorithm 5,
against a regular triangle counting algorithm in ATA. The regular algorithm
computes the upper triangular portion of [U(ATA) · L(ATA)].*ATA using a
masked matrix multiplication similar to the algorithm described by Azad et
al [1], except ATA is stored as a dense matrix. Here .* denotes element wise
matrix multiplication.

29

Below is a table of all the data and results gathered.

30

|U | |V | |E| |EATA| Estimate(s) Regular(s) Error %
4.41E+03 1.13E+04 2.86E+04 2.06E+05 3.4 4.0 9.6
5.88E+04 1.18E+04 2.35E+05 7.06E+05 25.6 20.1 0
1.08E+04 3.37E+04 1.01E+05 8.84E+06 36.5 154.5 Overflow
4.40E+03 1.68E+04 1.50E+05 2.63E+06 19.0 32.8 Overflow
1.44E+04 2.77E+04 5.83E+04 2.44E+05 15.8 18.6 1019
1.57E+04 1.57E+04 4.70E+04 2.98E+05 7.8 8.1 0.2
5.20E+04 1.39E+04 6.24E+05 8.32E+05 24.4 19.1 0
1.01E+04 1.64E+04 4.48E+04 1.76E+05 9.0 8.1 43.6
4.56E+03 5.76E+03 2.46E+06 1.64E+07 99.5 147.8 Overflow
3.46E+05 1.23E+04 1.33E+06 1.05E+06 188.4 131.3 6.7
7.20E+04 2.70E+03 1.15E+06 1.18E+05 22.6 11.5 18.8
4.73E+04 8.90E+03 3.56E+05 2.11E+06 54.3 49.2 4.9
1.00E+03 8.81E+03 2.78E+04 5.61E+05 2.4 4.9 6.5
8.25E+02 8.63E+03 7.08E+04 4.36E+06 6.6 23.6 Overflow
1.21E+05 2.37E+04 1.47E+05 2.57E+05 41.9 21.5 1.2
3.16E+03 1.59E+04 2.87E+06 1.02E+08 315.7 2063.6 Overflow
1.18E+05 1.88E+04 4.70E+05 1.41E+06 77.6 60.7 0
4.68E+04 2.66E+04 1.20E+06 2.18E+08 286.5 3599.8 Overflow
1.20E+02 1.29E+04 3.60E+05 1.65E+08 21.9 1329.5 Overflow
3.02E+04 2.79E+04 1.04E+06 2.25E+07 180.0 775.5 Overflow

4.5.2 Advantages and Disadvantages

We can see that the estimation time was usually faster or around the same
amount of time as computing the exact number of triangles. Since the run-
time of the estimation algorithm is dependent on |E| and |V | in A, the
run-time is more predictable. The regular algorithm’s runtime is dependent
on |ET

AA|. The edges of ATA are heavily dependent on the structure of A
and cannot be determined by |U |, |V |, or |E| or A. Therefore, the regular al-
gorithm sometimes runs over 10 times longer than the estimation algorithm.
Furthermore, the regular algorithm requires significantly more memory since
the ATA is stored but in the estimation algorithm, only one column is stored
at a time.

However, the triangle estimation algorithm does not have any bounds on
its error. While most of the data tested had an error of below 50% when
overflow did not occur, there was one test case where the error was over

31

1000%. There is no upper bound to the error as the algorithm is currently
written other than the largest weight of any edge in ATA.

While the triangle estimation algorithm require significantly less memory,
O(|V |) to run and have more consistent run times, the unbounded error
makes it not particularly useful. However, the sum-weight and product-
weight algorithms which have similar run time may have practical use.

32

References and Further
Reading

[1] Ariful Azad, Aydin Buluc, and John Gilbert, Parallel Triangle Counting
and Enumeration using Matrix Algebra, Workshop on Graph Algorithms
Building Blocks, 2015.

[2] Alan George and Micahel T. Heath, Solution of sparse linear least
squares problems using givens rotations , Linear Algebra and its Ap-
plications, Volume 34, pp.69-83, December 1980.

[3] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen, What
Color is Your Jacboian? Graph Coloring for Computing Derivatives,
SIAM Rev, pp.627-705, August 2006

[4] C. Seshadhri, Ali Pinar, and Tamara G. Kolda, Wedge Sampling
for Computing Clustering Coefficients and Triangle Counts on Large
Graphs, Statustics Analysis and Data Mining, Vol. 7, No. 4, pp.294-307,
August 2014.

[5] Edith Cohen, Structure Prediction and Computation of Spares Matrix
Products, Journal of Combinatorial Optimization 2, 307-332, 1999.

[6] Tim Davis, John R. Gilbert, Stefan I Larimore, and Esmond G. Ng, A
column appropriate minimum degree ordering algorithm, ACM Transac-
tions on Mathematical Software (TOMS), Volume 30 Issue 3, pp.353-
376, September 2004.

[7] Gene H. Golub, and Chen Greif Techniques For Solving General KKT
Systems, 2000.

33

[8] Grey Ballard, Ali Pinar, Tamara G. Kolda, and C. Seshadhri, Diamond
Sampling for Approximate Maximum All-pairs Dot-product (MAD)
Search, arXiv:1506.03872

[9] J. R. Gilbert, X. S. Li, E. G. Ng, B. W. Peyton, Computing Row and
Column Counts for Sparse QR and LU Factorization, BIT Numerical
Mathematics, Volume 41 Issue 4, pp 693-710, September 2001.

[10] Mark Ortmann and Ulrik Brandes, Triangle Listing Algorithms: Back
from the Diversion, 2014 Proceedings of the Sixteenth Workshop on
Algorithm Engineering and Experiments.

[11] Jeremy Kepner, and John Gilbert. Graph Algorithms in the Language
of Linear Algebra. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2011. Print.

[12] Jonathan Cohen, Graph Twiddling in a MapReduce World, Journal
Computing in Science and Engineering, Vol. 11, No. 4, pp 29-41, July
2009.

34

	Introduction and Motivations
	Definitions
	Applications
	Compressed Column/Row Storage
	Goals

	Connected Components and Distance
	Adjacency in ATA
	Connected Components
	Connectedness in ATA
	Algorithm Description

	Results and Comparisons
	Algorithm Complexity
	Advantages, Disadvantages, and Results

	Distance

	Independent Sets
	Maximally Independent Set Criterion
	Maximally Independent Set Algorithm

	Triangle Counting
	Counting Triangles with Product-Weight
	Counting Triangles with Sum-Weight
	Sum of a Matrix Product
	Weighted Triangle Count Algorithms
	Approximating Triangle Count
	Results
	Advantages and Disadvantages

